Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Chem Biodivers ; 21(5): e202400085, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38329156

RESUMO

A lesser-known bee product called drone brood homogenate (DBH, apilarnil) has recently attracted scientific interest for its chemical and biological properties. It contains pharmacologically active compounds that may have neuroprotective, antioxidant, fertility-enhancing, and antiviral effects. Unlike other bee products, the chemical composition of bee drone larva is poorly studied. This study analyzed the chemical compostion of apilarnil using several methods. These included liquid chromatography-mass spectrometry (LC-MS/MS) and a combination of gas chromatography/mass spectrometry with solid phase micro-extraction (SPME/GC-MS). Additionally, antioxidant activity of the apilarnil was assessed using 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. A chemical assessment of apilarnil showed that it has 6.3±0.00, 74.67±0.10 %, 3.65±0.32 %, 8.80±1.01 %, 13.16±0.94 %, and 8.79±0.49 % of pH, moisture, total lipids, proteins, flavonoids, and carbohydrates, respectively. LC-MS/MS analysis and molecular networking (GNPS) of apilarnil exhibited 44 compounds, including fatty acids, flavonoids, glycerophospholipids, alcohols, sugars, amino acids, and steroids. GC-MS detected 30 volatile compounds in apilarnil, mainly esters (24 %), ketones (23.84 %), ethers (15.05 %), alcohols (11.41 %), fatty acids (10.06), aldehydes (6.73 %), amines (5.46), and alkene (5.53 %). The antioxidant activity of apilarnil was measured using DPPH with an IC50 of 179.93±2.46 µg/ml.


Assuntos
Antioxidantes , Compostos de Bifenilo , Abelhas , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Animais , Compostos de Bifenilo/antagonistas & inibidores , Cromatografia Gasosa-Espectrometria de Massas , Picratos/antagonistas & inibidores , Espectrometria de Massas em Tandem , Cromatografia Líquida , Microextração em Fase Sólida
2.
Molecules ; 28(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37175378

RESUMO

(1) Background: Citrus honey constitutes a unique monofloral honey characterized by a distinctive aroma and unique taste. The non-targeted chemical analysis can provide pivotal information on chemical markers that differentiate honey based on its geographical and botanical origin. (2) Methods: Within the PRIMA project "PLANT-B", a metabolomics workflow was established to unveil potential chemical markers of orange blossom honey produced in case study areas of Egypt, Italy, and Greece. In some of these areas, aromatic medicinal plants were cultivated to enhance biodiversity and attract pollinators. The non-targeted chemical analysis and metabolomics were conducted using ultra-high-performance liquid chromatography high-resolution mass spectrometry (UHPLC-HRMS). (3) Results: Forty compounds were disclosed as potential chemical markers, enabling the differentiation of the three orange blossom honeys according to geographical origin. Italian honey showed a preponderance of flavonoids, while in Greek honey, terpenoids and iridoids were more abundant than flavonoids, except for hesperidin. In Egyptian honey, suberic acid and a fatty acid ester derivative emerged as chemical markers. New, for honey, furan derivatives were identified using GC-MS in Greek samples. (4) Conclusions: The application of UHPLC-HRMS metabolomics combined with an elaborate melissopalynological analysis managed to unveil several potential markers of Mediterranean citrus honey potentially associated with citrus crop varieties and the local indigenous flora.


Assuntos
Citrus sinensis , Citrus , Mel , Cromatografia Gasosa-Espectrometria de Massas , Cromatografia Líquida de Alta Pressão , Mel/análise , Citrus sinensis/química , Espectrometria de Massas , Flores/química , Flavonoides/análise , Biomarcadores/análise , Metabolômica
3.
Molecules ; 28(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36615421

RESUMO

Honeybee products, as multicomponent substances, have been a focus of great interest. The present work aimed to perform the nutritional and chemical profiling and biochemical characterization of bee pollen (BP), bee bread (BB), and royal jelly (RJ) and study their applications in the fortification of functional fermented dairy products. Their effects on starter cultures and the physicochemical and sensorial quality of products were monitored. A molecular networking analysis identified a total of 46 compounds in the three bee products that could be potential medicines, including flavonoids, fatty acids, and peptides. BB showed the highest protein and sugar contents (22.57 and 26.78 g/100 g), which cover 45.14 and 53.56% of their daily values (DVs), with considerable amounts of the essential amino acids threonine and lysine (59.50 and 42.03%). BP, BB, and RJ can be considered sources of iron, as 100 g can cover 141, 198.5, and 94.94% of DV%, respectively. BP was revealed to have the highest phenolic and flavonoid contents (105.68 and 43.91 µg/g) and showed a synergetic effect when mixed with RJ, resulting in increased antioxidant activity, while BB showed a synergetic effect when mixed with RJ in terms of both antioxidant and proteolytic powers (IC50 7.54, 11.55, 12.15, 12.50, and 12.65 cP compared to the control (10.55 cP)), reflecting their organoleptic properties and highlighting these health-oriented products as promising natural products for human health care.


Assuntos
Própole , Abelhas , Animais , Humanos , Própole/química , Ácidos Graxos/química , Antioxidantes/análise , Flavonoides/química , Pólen/química
4.
Mar Drugs ; 17(9)2019 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-31443597

RESUMO

Cancer remains one of the most lethal diseases worldwide. There is an urgent need for new drugs with novel modes of action and thus considerable research has been conducted for new anticancer drugs from natural sources, especially plants, microbes and marine organisms. Marine populations represent reservoirs of novel bioactive metabolites with diverse groups of chemical structures. This review highlights the impact of marine organisms, with particular emphasis on marine plants, algae, bacteria, actinomycetes, fungi, sponges and soft corals. Anti-cancer effects of marine natural products in in vitro and in vivo studies were first introduced; their activity in the prevention of tumor formation and the related compound-induced apoptosis and cytotoxicities were tackled. The possible molecular mechanisms behind the biological effects are also presented. The review highlights the diversity of marine organisms, novel chemical structures, and chemical property space. Finally, therapeutic strategies and the present use of marine-derived components, its future direction and limitations are discussed.


Assuntos
Antineoplásicos/farmacologia , Organismos Aquáticos/química , Produtos Biológicos/farmacologia , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/isolamento & purificação , Antineoplásicos/uso terapêutico , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/uso terapêutico , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Humanos , Resultado do Tratamento
5.
Molecules ; 24(13)2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31288458

RESUMO

BACKGROUND/AIM: Plants play an important role in anti-cancer drug discovery, therefore, the current study aimed to evaluate the biological activity of Alpinia zerumbet (A. zerumbet) flowers. METHODS: The phytochemical and biological criteria of A. zerumbet were in vitro investigated as well as in mouse xenograft model. RESULTS: A. zerumbet extracts, specially CH2Cl2 and MeOH extracts, exhibited the highest potent anti-tumor activity against Ehrlich ascites carcinoma (EAC) cells. The most active CH2Cl2 extract was subjected to bioassay-guided fractionation leading to isolatation of the naturally occurring 5,6-dehydrokawain (DK) which was characterized by IR, MS, 1H-NMR and 13C-NMR. A. zerumbet extracts, specially MeOH and CH2Cl2 extracts, exhibited significant inhibitory activity towards tumor volume (TV). Furthermore, A. zerumbet extracts declined the high level of malonaldehyde (MDA) as well as elevated the levels of superoxide dismutase (SOD) and catalase (CAT) in liver tissue homogenate. Moreover, DK showed anti-proliferative action on different human cancer cell lines. The recorded IC50 values against breast carcinoma (MCF-7), liver carcinoma (Hep-G2) and larynx carcinoma cells (HEP-2) were 3.08, 6.8, and 8.7 µg/mL, respectively. CONCLUSION: Taken together, these findings open the door for further investigations in order to explore the potential medicinal properties of A. zerumbet.


Assuntos
Alpinia/química , Antineoplásicos Fitogênicos/química , Extratos Vegetais/química , Pironas/química , Animais , Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Catalase/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Clorofórmio/química , Flores/química , Xenoenxertos , Humanos , Malondialdeído/metabolismo , Metanol/química , Camundongos , Transplante de Neoplasias , Extratos Vegetais/farmacologia , Plantas Medicinais , Pironas/farmacologia , Solventes , Superóxido Dismutase/metabolismo
6.
Reprod Toxicol ; 125: 108570, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38484946

RESUMO

Apilarnil, a bee-derived product originating from drone larvae, offers a range of advantageous properties for both humans and animals. It functions as an antioxidant, provides neuroprotection, boosts fertility, and has antiviral capabilities. Additionally, it is a provider of androgenic hormones. These beneficial functions are supported by its chemical composition, which comprises mineral salts, vitamins, carbs, lipids, hormones, and amino acids. The current study aimed to evaluate the ameliorative effect of apilarnil against Bisphenol A (BPA)-induced testicular toxicity in male adult rats. Forty-eight Wistar albino rats were randomly classified into six groups. The first, second, and third received olive oil, BPA at a dose of 50 mg/kg body weight (bwt), and apilarnil at a dose of 0.6 g/kg bwt, respectively. The fourth, fifth, and sixth groups received apilarnil with, before, or after BPA administration, respectively. Phytochemical analysis using included linear ion trap-ultra-performance liquid chromatography-tandem mass spectrometry (LTQ-UPLC-MS/MS) and global natural products social molecular networking (GNPS) revealed the presence of lysine, 10-hydroxy-(E)-2-dodecenoic acid, apigenin7-glucoside, testosterone, progesterone, and campesterol. BPA administration decreased serum level of follicle stimulating hormone (FSH), luteinizing hormone (LH), testosterone, glutathione (GSH) concentration, total sperm count, motility, and vitality. Additionally, BPA increased sperm abnormalities, malondialdehyde concentration (MDA), and decreased proliferating cell nuclear antigen (PCNA) expression. The treatment with apilarnil ameliorated BPA reproductive toxicity in rats which was indicated by increased serum testosterone levels, normalized serum levels of FSH and LH, and concentration of MDA and GSH activity. Moreover, apilarnil improved sperm count, motility, morphology, and PCNA expression. Apilarnil was found to enhance reproductive hormones, MDA levels, antioxidant activity, and PCNA expression.


Assuntos
Antioxidantes , Compostos Benzidrílicos , Produtos Biológicos , Fenóis , Adulto , Animais , Humanos , Masculino , Ratos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Produtos Biológicos/metabolismo , Produtos Biológicos/farmacologia , Cromatografia Líquida , Hormônio Foliculoestimulante , Glutationa/metabolismo , Hormônio Luteinizante , Estresse Oxidativo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ratos Wistar , Contagem de Espermatozoides , Espectrometria de Massas em Tandem , Testículo , Testosterona
7.
Bioengineering (Basel) ; 11(8)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39199787

RESUMO

Bee products, abundant in bioactive ingredients, have been utilized in both traditional and contemporary medicine. Their antioxidant, antimicrobial, and anti-inflammatory properties make them valuable for food, preservation, and cosmetics applications. Honeybees are a vast reservoir of potentially beneficial products such as honey, bee pollen, bee bread, beeswax, bee venom, and royal jelly. These products are rich in metabolites vital to human health, including proteins, amino acids, peptides, enzymes, sugars, vitamins, polyphenols, flavonoids, and minerals. The advancement of nanotechnology has led to a continuous search for new natural sources that can facilitate the easy, low-cost, and eco-friendly synthesis of nanomaterials. Nanoparticles (NPs) are actively synthesized using honeybee products, which serve dual purposes in preventive and interceptive treatment strategies due to their richness in essential metabolites. This review aims to highlight the potential role of bee products in this line and their applications as catalysts and food preservatives and to point out their anticancer, antibacterial, antifungal, and antioxidant underlying impacts. The research used several online databases, namely Google Scholar, Science Direct, and Sci Finder. The overall findings suggest that these bee-derived substances exhibit remarkable properties, making them promising candidates for the economical and eco-friendly production of NPs.

8.
Nutrients ; 15(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36615776

RESUMO

Honeybee products arouse interest in society due to their natural origin and range of important biological properties. Propolis (P) and royal jelly (RJ) attract scientists' attention because they exhibit antioxidant, anti-inflammatory, anti-bacterial, anti-tumor, and immunomodulatory abilities. In this study, we tested whether P and RJ could mitigate the adverse effects of cadmium (Cd) exposure, with particular emphasis on the reproductive function in female rats. In this line, one week of pretreatment was established. Six experimental groups were created, including (i) the control group (without any supplementation), (ii) the Cd group (receiving CdCl2 in a dose of 4.5 mg/kg/day), (iii) the P group (50 mg of P/kg/day), (iv) RJ group (200 mg of RJ/kg/day), (v) P + Cd group (rats pretreated with P and then treated with P and Cd simultaneously), (vi) RJ + Cd group (animals pretreated with RJ before receiving CdCl2 simultaneously with RJ). Cd treatment of rats adversely affected a number of measured parameters, including body weight, ovarian structure and ultrastructure, oxidative stress parameters, increased ovarian Cd content and prolonged the estrous cycle. Pretreatment and then cotreatment with P or RJ and Cd alleviated the adverse effects of Cd, transferring the clusters in the PCA analysis chart toward the control group. However, clusters for cotreated groups were still distinctly separated from the control and P, or RJ alone treated groups. Most likely, investigated honeybee products can alter Cd absorption in the gut and/or increase its excretion through the kidneys and/or mitigate oxidative stress by various components. Undoubtedly, pretreatment with P or RJ can effectively prepare the organism to overcome harmful insults. Although the chemical composition of RJ and P is relatively well known, focusing on proportion, duration, and scheme of treatment, as well as the effects of particular components, may provide interesting data in the future. In the era of returning to natural products, both P and RJ seem valuable materials for further consideration as anti-infertility agents.


Assuntos
Cádmio , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Ratos , Abelhas , Feminino , Animais , Cádmio/toxicidade , Cromatografia Líquida , Espectrometria de Massas em Tandem , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Estresse Oxidativo , Ácidos Graxos/farmacologia
9.
Nutrients ; 14(19)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36235818

RESUMO

Cancer is one of the major causes of death globally. Currently, various methods are used to treat cancer, including radiotherapy, surgery, and chemotherapy, all of which have serious adverse effects. A healthy lifestyle, especially a nutritional diet, plays a critical role in the treatment and prevention of many disorders, including cancer. The above notion, plus the trend in going back to nature, encourages consumers and the food industry to invest more in food products and to find potential candidates that can maintain human health. One of these agents, and a very notable food agent, is royal jelly (RJ), known to be produced by the hypopharyngeal and mandibular salivary glands of young nurse honeybees. RJ contains bioactive substances, such as carbohydrates, protein, lipids, peptides, mineral salts and polyphenols which contribute to the appreciated biological and pharmacological activities. Antioxidant, anticancer, anti-inflammatory, antidiabetic, and antibacterial impacts are among the well-recognized benefits. The combination of RJ or its constituents with anticancer drugs has synergistic effects on cancer disorders, enhancing the drug's effectiveness or reducing its side effects. The purpose of the present review is to emphasize the possible interactions between chemotherapy and RJ, or its components, in treating cancer illnesses.


Assuntos
Antineoplásicos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Neoplasias , Animais , Antibacterianos/farmacologia , Anti-Inflamatórios/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Abelhas , Carboidratos , Ácidos Graxos/farmacologia , Humanos , Hipoglicemiantes/uso terapêutico , Minerais/uso terapêutico , Neoplasias/tratamento farmacológico , Sais
10.
Nutrients ; 13(6)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072636

RESUMO

Bee pollen is a combination of plant pollen and honeybee secretions and nectar. The Bible and ancient Egyptian texts are documented proof of its use in public health. It is considered a gold mine of nutrition due to its active components that have significant health and medicinal properties. Bee pollen contains bioactive compounds including proteins, amino acids, lipids, carbohydrates, minerals, vitamins, and polyphenols. The vital components of bee pollen enhance different bodily functions and offer protection against many diseases. It is generally marketed as a functional food with affordable and inexpensive prices with promising future industrial potentials. This review highlights the dietary properties of bee pollen and its influence on human health, and its applications in the food industry.


Assuntos
Abelhas , Alimento Funcional , Pólen , Própole , Animais , Antioxidantes/análise , Glicemia , Carboidratos/análise , Humanos , Síndrome Metabólica , Camundongos , Valor Nutritivo , Ratos
11.
Front Nutr ; 8: 761267, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35047540

RESUMO

Inflammation is a defense process triggered when the body faces assaults from pathogens, toxic substances, microbial infections, or when tissue is damaged. Immune and inflammatory disorders are common pathogenic pathways that lead to the progress of various chronic diseases, such as cancer and diabetes. The overproduction of cytokines, such as interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α, is an essential parameter in the clinical diagnosis of auto-inflammatory diseases. In this review, the effects of bee products have on inflammatory and autoimmune diseases are discussed with respect to the current literature. The databases of Google Scholar, PubMed, Science Direct, Sci-Finder and clinical trials were screened using different combinations of the following terms: "immunomodulatory", "anti-inflammatory", "bee products", "honey", "propolis", "royal jelly", "bee venom", "bee pollen", "bee bread", "preclinical trials", "clinical trials", and "safety". Honey bee products, including propolis, royal jelly, honey, bee venom, and bee pollen, or their bioactive chemical constituents like polyphenols, demonstrate interesting therapeutic potential in the regulation of inflammatory mediator production as per the increase of TNF-α, IL-1ß, IL-6, Il-2, and Il-7, and the decrease of reactive oxygen species (ROS) production. Additionally, improvement in the immune response via activation of B and T lymphocyte cells, both in in vitro, in vivo and in clinical studies was reported. Thus, the biological properties of bee products as anti-inflammatory, immune protective, antioxidant, anti-apoptotic, and antimicrobial agents have prompted further clinical investigation.

12.
Toxins (Basel) ; 13(3)2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809401

RESUMO

Wasps, members of the order Hymenoptera, are distributed in different parts of the world, including Brazil, Thailand, Japan, Korea, and Argentina. The lifestyles of the wasps are solitary and social. Social wasps use venom as a defensive measure to protect their colonies, whereas solitary wasps use their venom to capture prey. Chemically, wasp venom possesses a wide variety of enzymes, proteins, peptides, volatile compounds, and bioactive constituents, which include phospholipase A2, antigen 5, mastoparan, and decoralin. The bioactive constituents have anticancer, antimicrobial, and anti-inflammatory effects. However, the limited quantities of wasp venom and the scarcity of advanced strategies for the synthesis of wasp venom's bioactive compounds remain a challenge facing the effective usage of wasp venom. Solid-phase peptide synthesis is currently used to prepare wasp venom peptides and their analogs such as mastoparan, anoplin, decoralin, polybia-CP, and polydim-I. The goal of the current review is to highlight the medicinal value of the wasp venom compounds, as well as limitations and possibilities. Wasp venom could be a potential and novel natural source to develop innovative pharmaceuticals and new agents for drug discovery.


Assuntos
Anti-Infecciosos/farmacologia , Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Proteínas de Insetos/farmacologia , Nanotecnologia , Venenos de Vespas/farmacologia , Animais , Anti-Infecciosos/síntese química , Anti-Inflamatórios/síntese química , Antineoplásicos/síntese química , Humanos , Proteínas de Insetos/síntese química , Venenos de Vespas/síntese química
13.
Foods ; 10(8)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34441553

RESUMO

Propolis, a resin produced by honeybees, has long been used as a dietary supplement and folk remedy, and more recent preclinical investigations have demonstrated a large spectrum of potential therapeutic bioactivities, including antioxidant, antibacterial, anti-inflammatory, neuroprotective, immunomodulatory, anticancer, and antiviral properties. As an antiviral agent, propolis and various constituents have shown promising preclinical efficacy against adenoviruses, influenza viruses, respiratory tract viruses, herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2), human immunodeficiency virus (HIV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Over 300 chemical components have been identified in propolis, including terpenes, flavonoids, and phenolic acids, with the specific constituent profile varying widely according to geographic origin and regional flora. Propolis and its constituents have demonstrated potential efficacy against SARS-CoV-2 by modulating multiple pathogenic and antiviral pathways. Molecular docking studies have demonstrated high binding affinities of propolis derivatives to multiple SARS-CoV-2 proteins, including 3C-like protease (3CLpro), papain-like protease (PLpro), RNA-dependent RNA polymerase (RdRp), the receptor-binding domain (RBD) of the spike protein (S-protein), and helicase (NSP13), as well as to the viral target angiotensin-converting enzyme 2 (ACE2). Among these compounds, retusapurpurin A has shown high affinity to 3CLpro (ΔG = -9.4 kcal/mol), RdRp (-7.5), RBD (-7.2), NSP13 (-9.4), and ACE2 (-10.4) and potent inhibition of viral entry by forming hydrogen bonds with amino acid residues within viral and human target proteins. In addition, propolis-derived baccharin demonstrated even higher binding affinity towards PLpro (-8.2 kcal/mol). Measures of drug-likeness parameters, including metabolism, distribution, absorption, excretion, and toxicity (ADMET) characteristics, also support the potential of propolis as an effective agent to combat COVID-19.

14.
Toxins (Basel) ; 12(2)2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31973181

RESUMO

Natural products represent important sources for the discovery and design of novel drugs. Bee venom and its isolated components have been intensively studied with respect to their potential to counteract or ameliorate diverse human diseases. Despite extensive research and significant advances in recent years, multifactorial diseases such as cancer, rheumatoid arthritis and neurodegenerative diseases remain major healthcare issues at present. Although pure bee venom, apitoxin, is mostly described to mediate anti-inflammatory, anti-arthritic and neuroprotective effects, its primary component melittin may represent an anticancer therapeutic. In this review, we approach the possibilities and limitations of apitoxin and its components in the treatment of these multifactorial diseases. We further discuss the observed unspecific cytotoxicity of melittin that strongly restricts its therapeutic use and review interesting possibilities of a beneficial use by selectively targeting melittin to cancer cells.


Assuntos
Anti-Inflamatórios/uso terapêutico , Antineoplásicos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Venenos de Abelha/uso terapêutico , Neoplasias/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Animais , Anti-Inflamatórios/química , Venenos de Abelha/química , Humanos , Fármacos Neuroprotetores/química
15.
Toxins (Basel) ; 12(7)2020 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-32664544

RESUMO

Bee venom (BV) is a rich source of secondary metabolites from honeybees (Apis mellifera L.). It contains a variety of bioactive ingredients including peptides, proteins, enzymes, and volatile metabolites. The compounds contribute to the venom's observed biological functions as per its anti-inflammatory and anticancer effects. The antimicrobial action of BV has been shown in vitro and in vivo experiments against bacteria, viruses, and fungi. The synergistic therapeutic interactions of BV with antibiotics has been reported. The synergistic effect contributes to a decrease in the loading and maintenance dosage, a decrease in the side effects of chemotherapy, and a decrease in drug resistance. To our knowledge, there have been no reviews on the impact of BV and its antimicrobial constituents thus far. The purpose of this review is to address the antimicrobial properties of BV and its compounds.


Assuntos
Anti-Infecciosos/uso terapêutico , Venenos de Abelha/uso terapêutico , Abelhas/metabolismo , Animais , Antibacterianos/uso terapêutico , Antifúngicos/uso terapêutico , Antivirais/uso terapêutico , Venenos de Abelha/metabolismo , Humanos , Metabolismo Secundário
16.
Nat Prod Res ; 30(6): 729-34, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26186031

RESUMO

The marine soft corals Sarcophyton trocheliophorum crude extracts possessed antimicrobial activity towards pathogenic bacterial strains, i.e. Bacillus cereus, Salmonella typhi, Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. Bioassay-guided fractionation indicated that the antimicrobial effect was due to the presence of terpenoid bioactive derivatives. Further biological assays of the n-hexane fractions were carried out using turbidity assay, inhibition zone assay and minimum inhibitory concentration for investigating the growth-inhibition effect towards the Gram-positive and Gram-negative bacteria. The fractions were screened and the structure of the isolated compound was justified by interpretation of the spectroscopic data, mainly mass spectrometry (GC-MS). The structure was assigned as (5S)-3-[(3E,5S)-5-hydroxy-3-hepten-6-yn-1-yl]-5-methyl-2(5H)-furanone and was effective at concentrations as low as 0.20 mg/mL. The above findings, in the course of our ongoing research on marine products, may implicate that the profound anti-microbial activity of the S. trocheliophorum soft corals, inhabiting the red sea reefs, is attributed to the presence of growth-inhibiting secondary metabolites mainly terpenoids.


Assuntos
Antozoários/química , Antibacterianos/farmacologia , Furanos/farmacologia , Terpenos/farmacologia , Alcinos/isolamento & purificação , Alcinos/farmacologia , Animais , Antibacterianos/isolamento & purificação , Bacillus cereus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Furanos/isolamento & purificação , Cromatografia Gasosa-Espectrometria de Massas , Oceano Índico , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Salmonella typhi/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Terpenos/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA