Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
BMC Microbiol ; 24(1): 54, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341568

RESUMO

BACKGROUND: Candida albicans is the most common fungus that causes vaginal candidiasis in immunocompetent women and catastrophic infections in immunocompromised patients. The treatment of such infections is hindered due to the increasing emergence of resistance to azoles in C. albicans. New treatment approaches are needed to combat candidiasis especially in the dwindled supply of new effective and safe antifungals. The resistance to azoles is mainly attributed to export of azoles outside the cells by means of the efflux pump that confers cross resistance to all azoles including fluconazole (FLC). OBJECTIVES: This study aimed to investigate the possible efflux pump inhibiting activity of fusidic acid (FA) in C. albicans resistant isolates and the potential use of Fusidic acid in combination with fluconazole to potentiate the antifungal activity of fluconazole to restore its activity in the resistant C. albicans isolates. METHODS: The resistance of C. albicans isolates was assessed by determination of minimum inhibitory concentration. The effect of Fusidic acid at sub-inhibitory concentration on efflux activity was assayed by rhodamine 6G efflux assay and intracellular accumulation. Mice model studies were conducted to evaluate the anti-efflux activity of Fusidic acid and its synergistic effects in combination with fluconazole. Impact of Fusidic acid on ergosterol biosynthesis was quantified. The synergy of fluconazole when combined with Fusidic acid was investigated by determination of minimum inhibitory concentration. The cytotoxicity of Fusidic acid was tested against erythrocytes. The effect of Fusidic acid on efflux pumps was tested at the molecular level by real-time PCR and in silico study. In vivo vulvovaginitis mice model was used to confirm the activity of the combination in treating vulvovaginal candidiasis. RESULTS: Fusidic acid showed efflux inhibiting activity as it increased the accumulation of rhodamine 6G, a substrate for ABC-efflux transporter, and decreased its efflux in C. albicans cells. The antifungal activity of fluconazole was synergized when combined with Fusidic acid. Fusidic acid exerted only minimal cytotoxicity on human erythrocytes indicating its safety. The FA efflux inhibitory activity could be owed to its ability to interfere with efflux protein transporters as revealed by docking studies and downregulation of the efflux-encoding genes of both ABC transporters and MFS superfamily. Moreover, in vivo mice model showed that using fluconazole-fusidic acid combination by vaginal route enhanced fluconazole antifungal activity as shown by lowered fungal burden and a negligible histopathological change in vaginal tissue. CONCLUSION: The current findings highlight FA's potential as a potential adjuvant to FLC in the treatment of vulvovaginal candidiasis.


Assuntos
Candidíase Vulvovaginal , Candidíase , Humanos , Feminino , Animais , Camundongos , Fluconazol/farmacologia , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Candidíase Vulvovaginal/tratamento farmacológico , Ácido Fusídico/farmacologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Farmacorresistência Fúngica , Candida albicans , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Azóis/farmacologia , Testes de Sensibilidade Microbiana
2.
J Cell Physiol ; 238(1): 32-69, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36317692

RESUMO

A type of small noncoding RNAs known as microRNAs (miRNAs) fine-tune gene expression posttranscriptionally by binding to certain messenger RNA targets. Numerous physiological processes in the liver, such as differentiation, proliferation, and apoptosis, are regulated by miRNAs. Additionally, there is growing evidence that miRNAs contribute to liver pathology. Extracellular vesicles like exosomes, which contain secreted miRNAs, may facilitate paracrine and endocrine communication between various tissues by changing the gene expression and function of distal cells. The use of stable miRNAs as noninvasive biomarkers was made possible by the discovery of these molecules in body fluids. Circulating miRNAs reflect the conditions of the liver that are abnormal and may serve as new biomarkers for the early detection, prognosis, and evaluation of liver pathological states. miRNAs are appealing therapeutic targets for a range of liver disease states because altered miRNA expression is associated with deregulation of the liver's metabolism, liver damage, liver fibrosis, and tumor formation. This review provides a comprehensive review and update on miRNAs biogenesis pathways and mechanisms of miRNA-mediated gene silencing. It also outlines how miRNAs affect hepatic cell proliferation, death, and regeneration as well as hepatic detoxification. Additionally, it highlights the diverse functions that miRNAs play in the onset and progression of various liver diseases, including nonalcoholic fatty liver disease, alcoholic liver disease, fibrosis, hepatitis C virus infection, and hepatocellular carcinoma. Further, it summarizes the diverse liver-specific miRNAs, illustrating the potential merits and possible caveats of their utilization as noninvasive biomarkers and appealing therapeutic targets for liver illnesses.


Assuntos
Biomarcadores , Hepatopatias , Fígado , MicroRNAs , Humanos , Fígado/patologia , Fígado/fisiologia , MicroRNAs/genética , Exossomos , Inativação Gênica , Hepatopatias/patologia
3.
Int J Nanomedicine ; 19: 7323-7352, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39055376

RESUMO

Background: Prior studies on magnetite (Fe3O4) NPs and carbon nanotubes (CNTs) cytotoxic effects against acute myeloid leukemia (AML) are inconclusive rather than definitive. Purpose: Investigation of the effects of Gum Arabic (GA)-stabilized/destabilized Fe3O4 NPs and CNTs, alone or in combination, on AML cell proliferation. Methods: Hybrid NPs were synthesized, characterized, and assessed for their cytotoxicity against Kasumi-1, HL-60, and THP-1 in comparison to normal primary bone marrow CD34+ cells. The molecular pathways of nanostructures' cytotoxicity were also investigated. Results: The Fe3O4 NPs were effectively synthesized and attached to the surface of the CNTs, resulting in the formation of a novel hybrid through their interaction with the GA colloidal solution in an aqueous media. Although the evaluated nanostructured nanoparticles had significant growth suppression ability against the leukemia cell lines, with IC50 values ranging from 42.437 to 189.842 µg/mL, they exhibited comparatively modest toxicity towards normal hematopoietic cells (IC50: 113.529‒162.656 µg/mL). The incorporation of Fe3O4 NPs with CNTs in a hybrid nanocomposite significantly improved their effectiveness against leukemia cells, with the extent of improvement varying depending on the specific cell type. The nanostructured particles were stabilized by GA, which enhances their ability to inhibit cell proliferation in a manner that depends on the specific cell type. Also, nanoparticles exhibit cytotoxicity due to their capacity to stimulate the production of intracellular ROS, halt the cell cycle at the G1 phase, and induce apoptosis. This is supported by the activation of p53, BAX, cytochrome C, and caspase-3, which are triggered by ROS. The nanostructures lead to an increase in the expression of genes encoding proteins related to oxidative stress (SIRT1, FOXO3, NFE2L2, and MAP3K5) and cyclin-dependent kinase inhibitors (CDKN1A and CDKN1B) in response to ROS. Conclusion: We provide an effective Fe3O4 NPs/CNTs nano-hybrid composite that induces apoptosis and has strong anti-leukemic capabilities. This hybrid nanocomposite is promising for in vivo testing and validation.


Assuntos
Proliferação de Células , Goma Arábica , Leucemia Mieloide Aguda , Nanopartículas de Magnetita , Nanocompostos , Nanotubos de Carbono , Espécies Reativas de Oxigênio , Humanos , Espécies Reativas de Oxigênio/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Goma Arábica/química , Goma Arábica/farmacologia , Proliferação de Células/efeitos dos fármacos , Nanopartículas de Magnetita/química , Linhagem Celular Tumoral , Nanocompostos/química , Nanotubos de Carbono/química , Transdução de Sinais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Células HL-60 , Antineoplásicos/farmacologia , Antineoplásicos/química , Células THP-1
4.
Surg Infect (Larchmt) ; 25(7): 513-520, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38957977

RESUMO

Background: Post-partum infection is a major contributor to maternal mortality and is responsible for approximately 10% of maternal fatalities worldwide. The risk of infection is substantially higher in cesarean section procedures. Approximately 8% of women who undergo cesarean sections are susceptible to infection. Although the body of evidence supporting the regular pre-operative utilization of prophylactic antibiotic treatment is steadily expanding, its usefulness in cesarean sections has not yet been standardized, and post-partum infection is still a serious medical challenge. We aimed to retrospectively assess the prophylactic effectiveness of cefazolin in combination with other antibiotic agents in cesarean sections. Materials and Methods: Both uni-variable and multi-variable analyses were conducted to identify factors that may affect cefazolin pre-operative antibiotic prophylaxis in elective cesarean section operations. The uni-variable analysis included timing of administration, operation duration, body mass index (BMI), and wound type. A multi-variable logistic regression model was then created to determine which variables provide independent information in the context of other variables. Results: Time of administration did not affect prophylactic cefazolin efficacy. However, prophylactic cefazolin was 1.43 and 1.77 times more effective when the operation lasted for 45 minutes or more, compared with operations that were shorter than 45 minutes. Patients with a BMI ranging from 18 to 29 kg/m2 showed increased efficacy of prophylactic cefazolin compared with obese patients with a BMI exceeding 30 kg/m2. The effectiveness of prophylactic cefazolin decreased by 95% in patients with clean-contaminated surgical incisions compared with those with clean surgical incisions. Conclusions: Our findings demonstrate that administering pre-operative prophylactic antibiotic agents to women undergoing cesarean section resulted in a reduction in post-partum infections, thereby reducing maternal mortality. Furthermore, optimal timing of administration, re-dosing if necessary, length of prophylactic medication, and dosing adjustments for obese patients are crucial factors in preventing surgical site infections and promoting antimicrobial stewardship.


Assuntos
Antibacterianos , Antibioticoprofilaxia , Cefazolina , Cesárea , Infecção da Ferida Cirúrgica , Humanos , Cefazolina/uso terapêutico , Cefazolina/administração & dosagem , Estudos Retrospectivos , Antibioticoprofilaxia/métodos , Feminino , Cesárea/efeitos adversos , Antibacterianos/administração & dosagem , Antibacterianos/uso terapêutico , Adulto , Infecção da Ferida Cirúrgica/prevenção & controle , Gravidez , Cuidados Pré-Operatórios/métodos
5.
Front Pharmacol ; 15: 1406653, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835668

RESUMO

Background: P. aeruginosa, a significant bacterium, can cause severe illness and resistance to antibiotics. Quorum sensing (QS) systems regulate virulence factors production. Targeting QS could reduce bacteria pathogenicity and prevent antibiotic resistance. Cruciferous vegetables contain sulforaphane, known for its anti-inflammatory, antioxidant, anticancer, and antimicrobial properties. Aim: We aimed to examine the inhibitory influences of sulforaphane, at a sub-inhibitory concentration (» minimum inhibitory concentration, MIC), on virulence and QS in P. aeruginosa. Materials and methods: The sulforaphane's anti-virulence actions at sub-inhibitory concentrations were explored in vitro and in vivo. A sub-MIC concentration of sulforaphane was combined with anti-pseudomonal drugs, and the results of this combination were assessed. The virtual affinity of sulforaphane for the receptors of QS was studied, and its effect on the expression of QS genes was quantified. Results: Sulforaphane significantly decreased the biofilm formation, motility, ability to withstand oxidative stress, and the synthesis of virulence extracellular enzymes such as proteases, hemolysins, and elastase, as well as other virulence factors like pyocyanin. In addition, sulforaphane lessened the severity of P. aeruginosa infection in mice. Sulforaphane reduced the antipseudomonal antibiotics' MICs when used together, resulting in synergistic effects. The observed anti-virulence impacts were attributed to the ability of sulforaphane to inhibit QS via suppressing the QS genes' expression. Conclusion: Sulforaphane shows promise as a potent anti-virulence and anti-QS agent that can be used alongside conventional antimicrobials to manage severe infections effectively. Furthermore, this study paves the way for further investigation of sulforaphane and similar structures as pharmacophores for anti-QS candidates.

6.
Biotech Histochem ; 96(6): 418-430, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32909452

RESUMO

The therapeutic role of mesenchymal stem cells (MSCs) in cases of amiodarone (AD) induced pulmonary fibrosis (PF) has not been well studied. Also, the period required by MSCs to attain full therapeutic effectiveness has not yet been assessed. We investigated the potential curative effect of bone marrow-derived MSCs (BM-MSCs) and conditioned media (CM) from BM-MSCs on AD induced PF by focusing on pulmonary epithelium injury and repair, and extracellular matrix (ECM) remodeling. We used 64 Wistar rats divided into eight groups: negative control group; PF group; three PF groups treated with BM-MSCs for 1, 2 or 4 months; and three PF groups treated with CM for 1, 2 and 4 months. Serum levels of Clara cell secretory protein (CC16) and keratinocyte growth factor (KGF) were measured. Gene expression of type I collagen (COL1A1) and connective tissue growth factor (CTGF) was evaluated in pulmonary tissue. Treatment of PF challenged rats with BM-MSCs or CM caused reduced CC16 levels, increased KGF levels, reduced expression of COL1A1 and CTGF, histological improvement following lung injury, and decreased collagen accumulation. Treatment with BM-MSCs exhibited greater amelioration of PF than CM. BM-MSCs or CM treatment for 2 and 4 months exhibited better resolution of fibrosis than treatment for 1 month. BM-MSCs are promising for treating PF due to their attenuation of ECM deposition in addition to alleviating pulmonary epithelium damage and initiating its repair.


Assuntos
Amiodarona , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Fibrose Pulmonar , Animais , Medula Óssea , Células da Medula Óssea , Epitélio , Matriz Extracelular , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/terapia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA