Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Drug Dev Res ; 85(1): e22157, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38349261

RESUMO

It has been proven that stress, mainly in the early years of life, can lead to anxiety and mood problems. Current treatments for psychiatric disorders are not enough, and some of them show intolerable side effects, emphasizing the urgent need for new treatment targets. Hence, a better understanding of the different brain networks, which are involved in the response to anxiety and depression, may evoke treatments with more specific targets. One of these targets is ß-catenin that regulates brain circuits. ß-Catenin has a dual response toward stress, which may influence coping or vulnerability to stress response. Indeed, ß-catenin signaling involves several processes such as inflammation-directed brain repair, inflammation-induced brain damage, and neurogenesis. Interestingly, ß-catenin reduction is accompanied by low neurogenesis, which leads to anxiety and depression. However, in another state, this reduction activates a compensatory mechanism that enhances neurogenesis to protect against depression but may precipitate anxiety. Thus, understanding the molecular mechanism of ß-catenin could enhance our knowledge about anxiety and depression's pathophysiology, potentially improving clinical results by targeting it. Herein, the different states of ß-catenin were discussed, shedding light on possible drugs that showed action on psychiatric disorders through ß-catenin.


Assuntos
Depressão , beta Catenina , Humanos , Ansiedade/tratamento farmacológico , Depressão/tratamento farmacológico , Inflamação , Neurogênese
2.
Inflammopharmacology ; 32(2): 1091-1112, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38294617

RESUMO

Erigeron bonariensis is widely distributed throughout the world's tropics and subtropics. In folk medicine, E. bonariensis has historically been used to treat head and brain diseases. Alzheimer's disease (AD) is the most widespread form of dementia initiated via disturbances in brain function. Herein, the neuroprotective effect of the chemically characterized E. bonariensis ethanolic extract is reported for the first time in an AD animal model. Chemical profiling was conducted using UPLC-ESI-MS analysis. Female rats underwent ovariectomy (OVX) followed by 42 days of D-galactose (D-Gal) administration (150 mg/kg/day, i.p) to induce AD. The OVX/D-Gal-subjected rats received either donepezil (5 mg/kg/day) or E. bonariensis at 50, 100, and 200 mg/kg/day, given 1 h prior to D-Gal. UPLC-ESI-MS analysis identified 42 chemicals, including flavonoids, phenolic acids, terpenes, and nitrogenous constituents. Several metabolites, such as isoschaftoside, casticin, velutin, pantothenic acid, xanthurenic acid, C18-sphingosine, linoleamide, and erucamide, were reported herein for the first time in Erigeron genus. Treatment with E. bonariensis extract mitigated the cognitive decline in the Morris Water Maze test and the histopathological alterations in cortical and hippocampal tissues of OVX/D-Gal-subjected rats. Moreover, E. bonariensis extract mitigated OVX/D-Gal-induced Aß aggregation, Tau hyperphosphorylation, AChE activity, neuroinflammation (NF-κBp65, TNF-α, IL-1ß), and apoptosis (Cytc, BAX). Additionally, E. bonariensis extract ameliorated AD by increasing α7-nAChRs expression, down-regulating GSK-3ß and FOXO3a expression, and modulating Jak2/STAT3/NF-ĸB p65 and PI3K/AKT signaling cascades. These findings demonstrate the neuroprotective and memory-enhancing effects of E. bonariensis extract in the OVX/D-Gal rat model, highlighting its potential as a promising candidate for AD management.


Assuntos
Doença de Alzheimer , Erigeron , Fármacos Neuroprotetores , Ratos , Feminino , Animais , Ratos Wistar , Galactose/efeitos adversos , Cromatografia Líquida de Alta Pressão , Fosfatidilinositol 3-Quinases , Glicogênio Sintase Quinase 3 beta , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
3.
Ecotoxicol Environ Saf ; 249: 114439, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37272551

RESUMO

Methylimidazolium ionic liquids (MILs) are solvent chemicals used in industry. Recent work suggests that MILs are beginning to contaminate the environment and lead to exposure in the general population. In this study, the potential for MILs to cause cardiac toxicity has been examined. The effects of 5 chloride MIL salts possessing increasing alkyl chain lengths (2 C, EMI; 4 C, BMI; 6 C; HMI, 8 C, M8OI; 10 C, DMI) on rat neonatal cardiomyocyte beat rate, beat amplitude and cell survival were initially examined. Increasing alkyl chain length resulted in increasing adverse effects, with effects seen at 10-5 M at all endpoints with M8OI and DMI, the lowest concentration tested. A limited sub-acute toxicity study in rats identified potential cardiotoxic effects with longer chain MILs (HMI, M8OI and DMI) based on clinical chemistry. A 5 month oral/drinking water study with these MILs confirmed cardiotoxicity based on histopathology and clinical chemistry endpoints. Since previous studies in mice did not identify the heart as a target organ, the likely cause of the species difference was investigated. qRT-PCR and Western blotting identified a marked higher expression of p-glycoprotein-3 (also known as ABCB4 or MDR2) and the breast cancer related protein transporter BCRP (also known as ABCG2) in mouse, compared to rat heart. Addition of the BCRP inhibitor Ko143 - but not the p-glycoproteins inhibitor cyclosporin A - increased mouse cardiomyocyte HL-1 cell sensitivity to longer chain MILs to a limited extent. MILs therefore have a potential for cardiotoxicity in rats. Mice may be less sensitive to cardiotoxicity from MILs due in part, to increased excretion via higher levels of cardiac BCRP expression and/or function. MILs alone, therefore may represent a hazard in man in the future, particularly if use levels increase. The impact that MILs exposure has on sensitivity to cardiotoxic drugs, heart disease and other chronic diseases is unknown.


Assuntos
Líquidos Iônicos , Humanos , Camundongos , Ratos , Animais , Líquidos Iônicos/toxicidade , Cardiotoxicidade , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Neoplasias , Solventes , Cloretos
4.
Inflammopharmacology ; 31(3): 1053-1067, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37069462

RESUMO

Nociplastic pain is the third classification of pain as described by the International Association for the Study of Pain (IASP), in addition to the neuropathic and nociceptive pain classes. The main pathophysiological mechanism for developing nociplastic pain is central sensitization (CS) in which pain amplification and hypersensitivity occur. Fibromyalgia is the prototypical nociplastic pain disorder, characterized by allodynia and hyperalgesia. Much scientific data suggest that classical activation of microglia in the spinal cord mediates neuroinflammation which plays an essential role in developing CS. In this review article, we discuss the impact of microglia activation and M1/M2 polarization on developing neuroinflammation and nociplastic pain, besides the molecular mechanisms engaged in this process. In addition, we mention the impact of microglial modulators on M1/M2 microglial polarization that offers a novel therapeutic alternative for the management of nociplastic pain disorders. Illustrating the mechanisms underlying microglia activation in central sensitization and nociplastic pain. LPS lipopolysaccharide, TNF-α tumor necrosis factor-α, INF-γ Interferon gamma, ATP adenosine triphosphate, 49 P2Y12/13R purinergic P2Y 12/13 receptor, P2X4/7R purinergic P2X 4/7 receptor, SP Substance P, NK-1R Neurokinin 1 receptor, CCL2 CC motif ligand 2, CCR2 CC motif ligand 2 receptor, CSF-1 colony-stimulating factor 1, CSF-1R colony-stimulating factor 1 receptor, CX3CL1 CX3C motif ligand 1, CX3XR1 CX3C motif ligand 1 receptor, TLR toll-like receptor, MAPK mitogen-activated protein kinases, JNK jun N-terminal kinase, ERK extracellular signal-regulated kinase, iNOS Inducible nitric oxide synthase, IL-1ß interleukin-1ß, IL-6 interleukin-6, BDNF brain-derived neurotrophic factor, GABA γ-Aminobutyric acid, GABAR γ-Aminobutyric acid receptor, NMDAR N-methyl-D-aspartate receptor, AMPAR α-amino-3-hydroxy-5-methyl-4-isoxazolepropi-onic acid receptor, IL-4 interleukin-4, IL-13 interleukin-13, IL-10 interleukin-10, Arg-1 Arginase 1, FGF fibroblast growth factor, GDNF glial cell-derived neurotrophic factor, IGF-1 insulin-like growth factor-1, NGF nerve growth factor, CD Cluster of differentiation.


Assuntos
Fator Estimulador de Colônias de Macrófagos , Microglia , Humanos , Microglia/metabolismo , Fator Estimulador de Colônias de Macrófagos/metabolismo , Doenças Neuroinflamatórias , Ligantes , Dor/metabolismo , Hiperalgesia/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos , Fator de Necrose Tumoral alfa/metabolismo
5.
Int J Mol Sci ; 23(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36077035

RESUMO

The current study aims to evaluate the possible neuroprotective impact of gold nanoparticles (AuNPs) and an alpha-lipoic acid (ALA) mixture against brain damage in irradiated rats. AuNPs were synthesized and characterized using different techniques. Then, a preliminary investigation was carried out to determine the neuroprotective dose of AuNPs, where three single doses (500, 1000, and 1500 µg/kg) were orally administrated to male Wistar rats, one hour before being exposed to a single dose of 7Gy gamma radiation. One day following irradiation, the estimation of oxidative stress biomarkers (malondialdehyde, MDA; glutathione peroxidase, GPX), DNA fragmentation, and histopathological alterations were performed in brain cortical and hippocampal tissues in both normal and irradiated rats. The chosen neuroprotective dose of AuNPs (1000 µg/kg) was processed with ALA (100 mg/kg) to prepare the AuNPs-ALA mixture. The acute neuroprotective effect of AuNPs-ALA in irradiated rats was determined against valproic acid as a neuroprotective centrally acting reference drug. All drugs were orally administered one hour before the 7Gy-gamma irradiation. One day following irradiation, animals were sacrificed and exposed to examinations such as those of the preliminary experiment. Administration of AuNPs, ALA, and AuNPs-ALA mixture before irradiation significantly attenuated the radiation-induced oxidative stress through amelioration of MDA content and GPX activity along with alleviating DNA fragmentation and histopathological changes in both cortical and hippocampal tissues. Notably, the AuNPs-ALA mixture showed superior effect compared to that of AuNPs or ALA alone, as it mitigated oxidative stress, DNA damage, and histopathological injury collectively. Administration of AuNPs-ALA resulted in normalized MDA content, increased GPX activity, restored DNA content in the cortex and hippocampus besides only mild histopathological changes. The present data suggest that the AuNPs-ALA mixture may be considered a potential candidate for alleviating radiation-associated brain toxicity.


Assuntos
Nanopartículas Metálicas , Fármacos Neuroprotetores , Ácido Tióctico , Animais , Antioxidantes/farmacologia , Encéfalo , Ouro/farmacologia , Masculino , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo , Ratos , Ratos Wistar , Ácido Tióctico/farmacologia
6.
Inflammopharmacology ; 30(6): 2505-2520, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35364737

RESUMO

Autophagy and mitochondrial deficits are characteristics of early phase of Alzheimer's disease (AD). Sodium-glucose cotransporter-2 inhibitors have been nominated as a promising class against AD hallmarks. However, there are no available data yet to discuss the impact of gliflozins on autophagic pathways in AD. Peripherally, dapagliflozin's (DAPA) effect is mostly owed to autophagic signals. Thus, the goal of this study is to screen the power of DAPA centrally on LKB1/AMPK/SIRT1/mTOR signaling in the ovariectomized/D-galactose (OVX/D-Gal) rat model. Animals were arbitrarily distributed between 5 groups; the first group undergone sham operation, while remaining groups undergone OVX followed by D-Gal (150 mg/kg/day; i.p.) for 70 days. After 6 weeks, the third, fourth, and fifth groups received DAPA (1 mg/kg/day; p.o.); concomitantly with the AMPK inhibitor dorsomorphin (DORSO, 25 µg/rat, i.v.) in the fourth group and the SIRT1 inhibitor EX-527 (10 µg/rat, i.v.) in the fifth group. DAPA mitigated cognitive deficits of OVX/D-Gal rats, as mirrored in neurobehavioral task with hippocampal histopathological examination and immunohistochemical aggregates of p-Tau. The neuroprotective effect of DAPA was manifested by elevation of energy sensors; AMP/ATP ratio and LKB1/AMPK protein expressions along with autophagic markers; SIRT1, Beclin1, and LC3B expressions. Downstream the latter, DAPA boosted mTOR and mitochondrial function; TFAM, in contrary lessened BACE1. Herein, DORSO or EX-527 co-administration prohibited DAPA's actions where DORSO elucidated DAPA's direct effect on LKB1 while EX-527 mirrored its indirect effect on SIRT1. Therefore, DAPA implied its anti-AD effect, at least in part, via boosting hippocampal LKB1/AMPK/SIRT1/mTOR signaling in OVX/D-Gal rat model.


Assuntos
Doença de Alzheimer , Inibidores do Transportador 2 de Sódio-Glicose , Animais , Ratos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Proteínas Quinases Ativadas por AMP/metabolismo , Secretases da Proteína Precursora do Amiloide/farmacologia , Ácido Aspártico Endopeptidases/farmacologia , Autofagia , Galactose/farmacologia , Sirtuína 1/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Serina-Treonina Quinases TOR
7.
Inflammopharmacology ; 30(3): 919-934, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35364735

RESUMO

The heterogeneous nature of multiple sclerosis (MS) and the unavailability of treatments addressing its intricate network and reversing the disease state is yet an area that needs to be elucidated. Liraglutide, a glucagon-like peptide-1 analogue, recently exhibited intriguing potential neuroprotective effects. The currents study investigated its potential effect against mouse model of MS and the possible underlying mechanisms. Demyelination was induced in C57Bl/6 mice by cuprizone (400 mg/kg/day p.o.) for 5 weeks. Animals received either liraglutide (25 nmol/kg/day i.p.) or dorsomorphin, an AMPK inhibitor, (2.5 mg/Kg i.p.) 30 min before the liraglutide dose, for 4 weeks (starting from the second week). Liraglutide improved the behavioral profile in cuprizone-treated mice. Furthermore, it induced the re-myelination process through stimulating oligodendrocyte progenitor cells differentiation via Olig2 transcription activation, reflected by increased myelin basic protein and myelinated nerve fiber percentage. Liraglutide elevated the protein content of p-AMPK and SIRT1, in addition to the autophagy proteins Beclin-1 and LC3B. Liraglutide halted cellular damage as manifested by reduced HMGB1 protein and consequently TLR-4 downregulation, coupled with a decrease in NF-κB. Liraglutide also suppressed NLRP3 transcription. Dorsomorphin pre-administration indicated a possible interplay between AMPK/SIRT1 and NLRP3 inflammasome activation as it partially reversed liraglutide's effects. Immunohistochemical examination of Iba+ microglia emphasized these findings. In conclusion, liraglutide exerts neuroprotection against cuprizone-induced demyelination via anti-inflammatory, autophagic flux activation, NLRP3 inflammasome suppression, and anti-apoptotic mechanisms, possibly mediated, at least in part, via AMPK/SIRT1, autophagy, TLR-4/ NF-κB/NLRP3 signaling. The potential mechanistic insight of Lira in alleviating Cup-induced neurotoxicity via: (1) AMPK/SIRT1 pathways activation resulting in the stimulation of brain autophagy flux (confirmed by lowering Beclin-1 and LC3-B protein expression). (2) Inhibition of NLRP3 inflammasome activation, as evidenced by reduced HMGB1, TLR-4, NF-κB and NLRP3 protein expression, alongside diminishing the activation of its downstream cascade as reflected by reduced levels of caspase-1 and IL-1ß protein expression. (3) A possible modulating interplay between the previously mentioned two pathways.


Assuntos
Esclerose Múltipla , Fármacos Neuroprotetores , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Proteína Beclina-1 , Cuprizona/farmacologia , Modelos Animais de Doenças , Inflamassomos/metabolismo , Liraglutida/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/tratamento farmacológico , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fármacos Neuroprotetores/farmacologia , Sirtuína 1/metabolismo , Receptor 4 Toll-Like
8.
Toxicol Appl Pharmacol ; 398: 115028, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32360636

RESUMO

NADPH oxidase (NOX) has been identified as a crucial contender of oxidative damage in Alzheimer's disease (AD). However, the capability of diapocynin, a NOX inhibitor, to offer neuroprotection in AD models is still a matter of debate. Hence, the current work is dedicated to investigate the influence of diapocynin on cognitive impairment prompted by ovariectomy combined with D-galactose injection in rats (an AD animal model), and to elucidate the signaling mechanisms regulating diapocynin-induced effects. Female rats were exposed to ovariectomy or sham operation. Ovariectomized rats were injected intraperitoneally with D-galactose (150 mg/kg/day) for 70 days and, on day 43, they were orally treated with diapocynin (10 mg/kg/day) for 28 days. Diapocynin amended cognitive functions as confirmed using novel object recognition and Morris water maze tests along with histopathological improvement. It caused a prominent decrement in ß-secretase, p-tau, and amyloid ß, contrary to α-secretase elevation in hippocampus and hampered neuroinflammation and oxidative stress, manifested by declined levels of NOX1, tumor necrosis factor-α, and nuclear factor-kappa B p65. In addition, diapocynin augmented synaptophysin, brain-derived neurotrophic factor, and phospho-cAMP response element binding protein and enhanced protein expression of phosphorylated forms of phosphoinositide 3-kinase (PI3K), glycogen synthase kinase-3ß (GSK-3ß), protein kinase B (Akt), extracellular signal-regulated kinase (ERK) 1/2, ERK kinase kinase (Raf-1), and ERK kinase (MEK) 1/2, while inhibiting those of c-Jun and c-Jun N-terminal kinase (JNK). In conclusion, diapocynin attenuated memory impairment and AD-like anomalies via activating Raf-1/MEK/ERK and PI3K/Akt/GSK-3ß, while inhibiting JNK/c-Jun signaling cascades.


Assuntos
Acetofenonas/farmacologia , Doença de Alzheimer/tratamento farmacológico , Compostos de Bifenilo/farmacologia , Cognição/efeitos dos fármacos , Galactose/metabolismo , Nootrópicos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Doença de Alzheimer/metabolismo , Animais , Feminino , Glicogênio Sintase Quinase 3 beta/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Memória/efeitos dos fármacos , Ratos , Ratos Wistar
9.
J Pharmacol Sci ; 143(1): 23-29, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32139333

RESUMO

Valproic acid is a commonly used drug for many psychiatric disorders, particularly for epilepsy. However, it has been reported that its use is associated with possible side effects including hepatotoxicity. The present study investigated the hepatoprotective effect of ellagic acid against valproic acid-induced hepatotoxicity in rats. Ellagic acid (60 mg/kg/day; p.o) was treated for one week, followed by concomitant injection of valproic acid (250 mg/kg/day; i.p.) for another 14 consecutive days to induce hepatocellular damage in adult Sprague-Dawley rats. Valproic acid showed a marked increase in serum enzyme activities, AST, ALT, ALP and GGT. In addition, it significantly increased MDA and NO along with a marked decline in reduced GSH content. At the same time, valproic acid administration resulted in marked elevation in hydroxyproline, TNF-α production and NF-kB expression. These results were confirmed by histopathological examination. Treatment with ellagic acid markedly attenuated valproic acid-induced hepatic injury in rats.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Ácido Elágico/farmacologia , Fígado/efeitos dos fármacos , Ácido Valproico/toxicidade , Alanina Transaminase/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Aspartato Aminotransferases/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Ácido Elágico/administração & dosagem , Ácido Elágico/uso terapêutico , Glutationa/metabolismo , Fígado/metabolismo , Masculino , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fitoterapia , Ratos Sprague-Dawley , Ácido Valproico/administração & dosagem , Ácido Valproico/efeitos adversos
10.
Toxicol Appl Pharmacol ; 365: 30-40, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30576699

RESUMO

BACKGROUND: Since many diabetic patients require combination therapy, the use of herbal remedies with anti-diabetic activity represents a vital option in diabetes mellitus (DM) management. It has been reported that quercetin has hypoglycemic alongside anti-inflammatory and antioxidant activities. AIM: The present study aimed to investigate the effectiveness of combining quercetin with sitagliptin; a selective dipeptidyl peptidase-IV (DPP-IV) inhibitor, in the management of streptozotocin (STZ)-induced diabetic rats. METHODS: DM was induced by a single injection of STZ (45 mg/kg, i.p.) in male adult albino Wistar rats. Diabetic rats were orally treated with sitagliptin (70 mg/kg), quercetin (50 mg/kg) or their combination daily for three consecutive weeks. Serum levels of glucose, C-peptide, total cholesterol, triglycerides, malondialdehyde (MDA), superoxide dismutase, (SOD), reduced glutathione (GSH), tumor necrosis factor alpha, (TNF-α), nuclear factor kappa-B, (NF-κB) and adiponectin were estimated. In addition, histopathological, morphometrical and immunohistochemical examinations of pancreatic tissues were conducted. RESULTS: The combined administration of quercetin and sitagliptin normalized serum C-peptide, MDA, and significantly increased SOD, GSH and decreased NF-κB more than sitagliptin alone. Moreover, this combination normalized Islet number, ß-cells' number, area and perimeter alongside restoring the immunostaining intensity of ß-cells. CONCLUSION: Our results suggest the use of quercetin/sitagliptin combination for treating DM based on the observed improvements in glycemic control, metabolic profile, oxidative and inflammatory status, islet structure as well as ß-cells function compared with either treatment alone.


Assuntos
Antioxidantes/farmacologia , Glicemia/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Inibidores da Dipeptidil Peptidase IV/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Quercetina/farmacologia , Fosfato de Sitagliptina/farmacologia , Estreptozocina , Animais , Biomarcadores/sangue , Glicemia/metabolismo , Peptídeo C/sangue , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/patologia , Relação Dose-Resposta a Droga , Quimioterapia Combinada , Glutationa/sangue , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Masculino , Malondialdeído/sangue , NF-kappa B/sangue , Ratos Wistar , Superóxido Dismutase/sangue
11.
J Neurochem ; 146(2): 173-185, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29572844

RESUMO

Diabetic peripheral neuropathy is one of the most common microvascular complications that occurs with both type 1 and type 2 diabetes mellitus. It has a significant negative impact on patients' quality of life; as it starts with loss of limbs' sensation and may lead to lower limb amputation. This study aimed at investigating the effect of liraglutide on peripheral neuropathy in diabetic rats. Experimental diabetes was induced by single intraperitoneal injections of nicotinamide (50 mg/kg) and streptozotocin (52.5 mg/kg). Rats were allocated into five groups. Two groups were given saline or liraglutide (0.8 mg/kg, s.c.). Three diabetic groups were either untreated or treated with liraglutide (0.8 mg/kg, s.c.) or pregabalin (10 mg/kg, i.p.). After 2 weeks of treatment, behavioral, biochemical, histopathological, and immunohistochemical investigations were performed. Treatment with liraglutide-restored animals' body weight, normalized blood glucose, decreased glycated hemoglobin, and increased insulin levels. In parallel, it normalized motor coordination and the latency withdrawal time of both tail flick and hind paw cold allodynia tests and reversed histopathological alterations. Treatment with liraglutide also normalized malondialdehyde, matrix metalloproteinase-2 and -9 contents in sciatic nerve. Likewise, it decreased sciatic nerve nitric oxide and interleukin-6 contents, DNA fragmentation and expression of cyclooxygenase-2. Meanwhile, it increased superoxide dismutase and interleukin-10 contents in sciatic nerve. These findings indicate the neuroprotective effect of liraglutide against diabetic peripheral neuropathy probably via modulating oxidative stress, inflammation, and extracellular matrix remodeling.


Assuntos
Neuropatias Diabéticas/tratamento farmacológico , Matriz Extracelular/efeitos dos fármacos , Hipoglicemiantes/uso terapêutico , Inflamação/tratamento farmacológico , Liraglutida/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Animais , Antibióticos Antineoplásicos , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Neuropatias Diabéticas/induzido quimicamente , Neuropatias Diabéticas/complicações , Modelos Animais de Doenças , Hemoglobinas Glicadas/metabolismo , Masculino , Metaloproteinases da Matriz/metabolismo , Niacinamida/toxicidade , Limiar da Dor/efeitos dos fármacos , Ratos , Ratos Wistar , Estreptozocina/toxicidade , Complexo Vitamínico B/toxicidade
12.
J Neurochem ; 141(3): 449-460, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28178754

RESUMO

One-third of cancer patients undergoing chemotherapy treatment often display symptoms of depression leading to poor adherence and decreased quality of life. Thus, this study aimed to investigate the possible protective effect of nebivolol against cisplatin-associated depressive symptoms in adult male rats. Nebivolol is a highly cardioselective ß-adrenergic receptor blocker that possesses endothelium-dependent vasodilator properties and antioxidant capacities. Animals were allocated into four groups. Group one was given aqueous solution of carboxymethyl cellulose and served as control, group two was given nebivolol (10 mg/kg p.o., daily), group three was given cisplatin (2 mg/kg i.p. once per week) for 10 consecutive weeks and group four was treated with cisplatin concomitantly with nebivolol as per above schedule. Cisplatin-treated rats showed an increase in both depressive-like behaviors in open-field and forced swimming tests. In addition, histopathological examination revealed cortical encephalomalacia along with hippocampal neuronal degeneration and kidney dysfunction. In parallel, cisplatin administration prominently reduced GABA and elevated glutamate levels in the cortical and hippocampal tissues. Furthermore, it resulted in a significant decline in cortical and hippocampal brain-derived neurotrophic factor and nitric oxide contents concomitantly with a marked decrease in endothelial- and an increase in inducible-nitric oxide synthase genes expression. On the other hand, treatment with nebivolol effectively mitigated the aforementioned cisplatin-associated behavioral, biochemical, and histopathological alterations without changing its antitumor activity as evidenced by sulforhodamine B cell survival assay. Taken together, our results suggest that nebivolol may offer a promising approach for alleviating depressive symptoms associated with the use of cisplatin.


Assuntos
Antagonistas Adrenérgicos beta/uso terapêutico , Antineoplásicos , Cisplatino , Transtorno Depressivo/induzido quimicamente , Transtorno Depressivo/prevenção & controle , Nebivolol/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Animais , Comportamento Animal/efeitos dos fármacos , Química Encefálica/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Transtorno Depressivo/diagnóstico por imagem , Ácido Glutâmico/metabolismo , Masculino , Atividade Motora/efeitos dos fármacos , Óxido Nítrico/metabolismo , Ratos , Ratos Wistar , Natação/psicologia , Ácido gama-Aminobutírico/metabolismo
13.
Mol Neurobiol ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38584231

RESUMO

Defective ß-catenin signaling is accompanied with compensatory neurogenesis process that may pave to anxiety. ß-Catenin has a distinct role in alleviating anxiety in adolescence; however, it undergoes degradation by the degradation complex Axin and APC. Vilazodone (VZ) is a fast, effective antidepressant with SSRI activity and 5-HT1A partial agonism that amends somatic and/or psychic symptoms of anxiety. Yet, there is no data about anxiolytic effect of VZ on anxiety-related neurogenesis provoked by stress-reduced ß-catenin signaling. Furthermore, females have specific susceptibility toward psychopathology. The aim of the present study is to uncover the molecular mechanism of VZ relative to Wnt/ß-catenin signaling in female rats. Stress-induced anxiety was conducted by subjecting the rats to different stressful stimuli for 21 days. On the 15th day, stressed rats were treated with VZ(10 mg/kg, p.o.) alone or concomitant with the Wnt inhibitor: XAV939 (0.1 mg/kg, i.p.). Anxious rats showed low ß-catenin level turned over by Axin-1 with unanticipated reduction of APC pursued with elevated protein levels of neurogenesis-stimulating proteins: c-Myc and pThr183-Erk likewise gene expressions of miR-17-5p and miR-18. Two weeks of VZ treatment showed anxiolytic effect figured by alleviation of hippocampal histological examination. VZ protected ß-catenin signal via reduction in Axin-1 and elevation of APC conjugated with modulation of ß-catenin downstream targets. The cytoplasmic ß-catenin turnover by Axin-1 was restored by XAV939. Herein, VZ showed anti-anxiety effect, which may be in part through regaining the balance of the reduced ß-catenin and its subsequent exaggerated response of p-Erk, c-Myc, Dicer-1, miR-17-5p, and miR-18.

14.
Eur J Pharmacol ; 952: 175810, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37245858

RESUMO

Fibromyalgia (FM) is a pain disorder marked by generalized musculoskeletal pain accompanied by depression, fatigue, and sleep disturbances. Galantamine (Gal) is a positive allosteric modulator of neuronal nicotinic acetylcholine receptors (nAChRs) and a reversible inhibitor of cholinesterase. The current study aimed to explore the therapeutic potential of Gal against reserpine (Res)-induced FM-like condition along with investigating the α7-nAChR's role in Gal-mediated effects. Rats were injected with Res (1 mg/kg/day; sc) for 3 successive days then Gal (5 mg/kg/day; ip) was given alone and with the α7-nAChR blocker methyllycaconitine (3 mg/kg/day; ip), for the subsequent 5 days. Galantamine alleviated Res-induced histopathological changes and monoamines depletion in rats' spinal cord. It also exerted analgesic effect along with ameliorating Res-induced depression and motor-incoordination as confirmed by behavioral tests. Moreover, Gal produced anti-inflammatory effect through modulating AKT1/AKT2 and shifting M1/M2 macrophage polarization. The neuroprotective effects of Gal were mediated through activating cAMP/PKA and PI3K/AKT pathways in α7-nAChR-dependent manner. Thus, Gal can ameliorate Res-induced FM-like symptoms and mitigate the associated monoamines depletion, neuroinflammation, oxidative stress, apoptosis, and neurodegeneration through α7-nAChR stimulation, with the involvement of cAMP/PKA, PI3K/AKT, and M1/M2 macrophage polarization.


Assuntos
Fibromialgia , Galantamina , Ratos , Animais , Galantamina/farmacologia , Galantamina/uso terapêutico , Reserpina/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Microglia , Fibromialgia/induzido quimicamente , Fibromialgia/tratamento farmacológico
15.
Life Sci ; 310: 121002, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36191679

RESUMO

Anxiety is a neuropsychiatric disturbance that is commonly manifested in various dementia forms involving Alzheimer's disease (AD). The mechanisms underlying AD-associated anxiety haven't clearly recognized the role of energy metabolism in anxiety represented by the amygdala's autophagic sensors; liver kinase B1 (LKB1)/adenosine monophosphate kinase (AMPK). Dapagliflozin (DAPA), a SGLT2 inhibitor, acts as an autophagic activator through LKB1 activation in several diseases including AD. Herein, the propitious yet undetected anxiolytic potential of DAPA as an autophagic enhancer was investigated in AD animal model with emphasis on amygdala's GABAergic neurotransmission and brain-derived neurotrophic factor (BDNF). Alzheimer's disease was induced by ovariectomy (OVX) along with seventy-days-D-galactose (D-Gal) administration (150 mg/kg/day, i.p). On the 43rd day of D-Gal injection, OVX/D-Gal-subjected rats received DAPA (1 mg/kg/day, p.o) alone or with dorsomorphin the AMPK inhibitor (DORSO, 25 µg/rat, i.v.). In the amygdala, LKB1/AMPK were activated by DAPA inducing GABAB2 receptor stimulation; an effect that was abrogated by DORSO. Dapagliflozin also replenished the amygdala GABA, NE, and 5-HT levels along with glutamate suppression. Moreover, DAPA triggered BDNF production with consequent activation of its receptor, TrkB through activating GABAB2-related downstream phospholipase C/diacylglycerol/protein kinase C (PLC/DAG/PKC) signaling. This may promote GABAA expression, verifying the crosstalk between GABAA and GABAB2. The DAPA's anxiolytic effect was visualized by improved behavioral traits in elevated plus maze together with amendment of amygdala' histopathological abnormalities. Thus, the present study highlighted DAPA's anxiolytic effect which was attributed to GABAB2 activation and its function to induce BDNF/TrkB and GABAA expression through PLC/DAG/PKC pathway in AMPK-dependent manner.


Assuntos
Doença de Alzheimer , Ansiolíticos , Feminino , Animais , Ratos , Fator Neurotrófico Derivado do Encéfalo , Proteínas Quinases Ativadas por AMP/metabolismo , Monofosfato de Adenosina , Ansiedade/tratamento farmacológico , Ácido gama-Aminobutírico
16.
Arch Pharm Res ; 45(7): 475-493, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35767208

RESUMO

Diabetic peripheral neuropathy (DPN) represents a severe microvascular condition that dramatically affects diabetic patients despite adequate glycemic control, resulting in high morbidity. Thus, recently, anti-diabetic drugs that possess glucose-independent mechanisms attracted attention. This work aims to explore the potentiality of the selective sodium-glucose cotransporter-2 inhibitor, empagliflozin (EMPA), to ameliorate streptozotocin-induced DPN in rats with insight into its precise signaling mechanism. Rats were allocated into four groups, where control animals received vehicle daily for 2 weeks. In the remaining groups, DPN was elicited by single intraperitoneal injections of freshly prepared streptozotocin and nicotinamide (52.5 and 50 mg/kg, respectively). Then EMPA (3 mg/kg/p.o.) was given to two groups either alone or accompanied with the AMPK inhibitor dorsomorphin (0.2 mg/kg/i.p.). Despite the non-significant anti-hyperglycemic effect, EMPA improved sciatic nerve histopathological alterations, scoring, myelination, nerve fibers' count, and nerve conduction velocity. Moreover, EMPA alleviated responses to different nociceptive stimuli along with improved motor coordination. EMPA modulated ATP/AMP ratio, upregulated p-AMPK while reducing p-p38 MAPK expression, p-ERK1/2 and consequently p-NF-κB p65 as well as its downstream mediators (TNF-α and IL-1ß), besides enhancing SOD activity and lowering MDA content. Moreover, EMPA downregulated mTOR and stimulated ULK1 as well as beclin-1. Likewise, EMPA reduced miR-21 that enhanced RECK, reducing MMP-2 and -9 contents. EMPA's beneficial effects were almost abolished by dorsomorphin administration. In conclusion, EMPA displayed a protective effect against DPN independently from its anti-hyperglycemic effect, probably via modulating the AMPK pathway to modulate oxidative and inflammatory burden, extracellular matrix remodeling, and autophagy.


Assuntos
Diabetes Mellitus Tipo 2 , Neuropatias Diabéticas , MicroRNAs , Inibidores do Transportador 2 de Sódio-Glicose , Animais , Ratos , Proteínas Quinases Ativadas por AMP/metabolismo , Compostos Benzidrílicos/farmacologia , Compostos Benzidrílicos/uso terapêutico , Neuropatias Diabéticas/tratamento farmacológico , Neuropatias Diabéticas/patologia , Glucose , Glucosídeos , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Estreptozocina
17.
Biomed Pharmacother ; 145: 112395, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34775239

RESUMO

Inosine is a dietary supplement that is widely used for managing numerous central neurological disorders. Interestingly, recent experimental investigation of inosine revealed its potential to promote peripheral neuroprotection after sciatic nerve injury. Such investigation has guided the focus of the current study to expose the potential of inosine in mitigating diabetic peripheral neuropathy (DPN) in rats and to study the possible underlying signaling pathways. Adult male Wistar rats were arbitrarily distributed into four groups. In the first group, animals received saline daily for 15 days whereas rats of the remaining groups received a single injection of both nicotinamide (50 mg/Kg/i.p.) and streptozotocin (52.5 mg/Kg/i.p.) for DPN induction. Afterward, inosine (10 mg/Kg/p.o.) was administered to two groups, either alone or in combination with caffeine (3.75 mg/Kg/p.o.), an adenosine receptor antagonist. As a result, inosine showed a hypoglycemic effect, restored the sciatic nerve histological structure, enhanced myelination, modulated conduction velocities and maintained behavioral responses. Furthermore, inosine increased GLO1, reduced AGE/RAGE axis and oxidative stress which in turn, downregulated NF-κB p65 and its phosphorylated form in the sciatic nerves. Inosine enhanced Nrf2 expression and its downstream molecule HO-1, resulting in increased CAT and SOD along with lowered MDA. Moreover, pain was relieved due to suppression of PKC and TRPV1 expression, which ultimately lead to reduced SP and TGF-ß. The potential effects of inosine were nearly blocked by caffeine administration; this emphasizes the role of adenosine receptors in inosine-mediated neuroprotective effects. In conclusion, inosine alleviated hyperglycemia-induced DPN via modulating GLO1/AGE/RAGE/NF-κB p65/Nrf2 and TGF-ß/PKC/TRPV1/SP pathways.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Neuropatias Diabéticas/tratamento farmacológico , Inosina/farmacologia , Fármacos Neuroprotetores/farmacologia , Animais , Cafeína/farmacologia , Hiperglicemia/tratamento farmacológico , Hipoglicemiantes/farmacologia , Masculino , Niacinamida , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Receptores Purinérgicos P1/efeitos dos fármacos , Receptores Purinérgicos P1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estreptozocina
18.
Pharmaceuticals (Basel) ; 15(2)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35215363

RESUMO

Though quinoline anti-infective agents-associated neurotoxicity has been reported in the early 1970s, it only recently received regulatory recognition. In 2019, the European Medicines Agency enforced strict use for quinoline antibiotics. Thus, the current study evaluates the relation between subacute exposure to diiodohydroxyquinoline (DHQ), a commonly misused amebicide, with the development of motor and sensory abnormalities, highlighting age and gender as possible predisposing factors. Eighty rats were randomly assigned to eight groups according to their gender, age, and drug exposure; namely, four control groups received saline (adult male, adult female, young male, and young female), and the other four groups received DHQ. Young and adult rats received DHQ in doses of 176.7 and 247.4 mg/kg/day, respectively. After 4 weeks, rats were tested for sensory abnormality using analgesiometer, hot plate, and hind paw cold allodynia tests, and for motor function using open field and rotarod tests. Herein, the complex behavioral data were analyzed by principal component analysis to reduce the high number of variables to a lower number of representative factors that extracted components related to sensory, motor, and anxiety-like behavior. Behavioral outcomes were reflected in a histopathological examination of the cerebral cortex, striatum, spinal cord, and sciatic nerve, which revealed degenerative changes as well demyelination. Noteworthy, young female rats were more susceptible to DHQ's toxicity than their counterparts. Taken together, these findings confirm previous safety concerns regarding quinoline-associated neurotoxicity and provide an impetus to review risk/benefit balance for their use.

19.
Life Sci ; 287: 120132, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34774622

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disease that impairs people's lives tremendously. The development of innovative treatment modalities for PD is a significant unmet medical need. The critical function of glucagon-like peptide-1 (GLP-1) in neurodegenerative diseases has raised impetus in investigating the repositioning of a dipeptidyl peptidase IV inhibitor, alogliptin (ALO), as an effective treatment for PD. As a result, the focus of this research was to assess the effect of ALO in a rat rotenone (ROT) model of PD. For 21 days, ROT (1.5 mg/kg) was delivered subcutaneously every other day. ALO (30 mg/kg/day), delivered by gavage for 21 days, recovered motor performance and improved motor coordination in the open-field and rotarod testing. These impacts were highlighted by restoring striatal dopamine content and correcting histological changes that occurred concurrently. The ALO molecular signaling was determined by increasing the quantity of GLP-1 and the protein expression of its downstream signaling pathway, pT172-AMPK/SIRT1/PGC-1α. Furthermore, it curbed neuroinflammation via hampering HMGB1/TLR4/NLRP3 inflammasome activation and conquered striatal microglia activation. Pre-administration of dorsomorphin reversed the neuroprotective effects. In conclusion, the promising neuroprotective effect of ALO highlights the repositioning of ALO as a prospective revolutionary candidate for combating PD.


Assuntos
Reposicionamento de Medicamentos/métodos , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/metabolismo , Piperidinas/uso terapêutico , Uracila/análogos & derivados , Animais , Dimetil Sulfóxido/toxicidade , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Masculino , Transtornos Parkinsonianos/induzido quimicamente , Piperidinas/farmacologia , Ratos , Ratos Wistar , Uracila/farmacologia , Uracila/uso terapêutico
20.
Artigo em Inglês | MEDLINE | ID: mdl-34087391

RESUMO

Huntington's disease (HD) is characterized by abnormal involuntary movements together with cognitive impairment and disrupted mood changes. 3-nitropropionic acid (3-NP) is one of the chemo-toxic models used to address the striatal neurotoxicity pattern encountered in HD. This study aims to explain the neuroprotective effect of nano-formulated ivabradine (nano IVA) in enhancing behavioral changes related to 3-NP model and to identify the involvement of ras homolog enriched striatum (Rhes)/mammalian target of rapamycin (m-Tor) mediated autophagy pathway. Rats were divided into 6 groups, the first 3 groups received saline (control), ivabradine (IVA), nano IVA respectively, the fourth received a daily dose of 3-NP (20 mg/kg, s.c) for 2 weeks, the fifth received 3-NP + IVA (1 mg/kg, into the tail vein, every other day for 1 week) and the last group received 3-NP + nano IVA (1 mg/kg, i.v, every other day for 1 week). Interestingly, nano IVA reversed motor disabilities, improved memory function and overcame the psychiatric changes. It boosted expression of autophagy markers combined with down regulation of Rhes, m-Tor and b-cell lymphoma 2 protein levels. Also, it restored the normal level of neurotransmitters and myocardial function related-proteins. Histopathological examination revealed a preserved striatal structure with decreased number of darkly-degenerated neurons. In conclusion, the outcomes of this study provide a well-recognized clue for the promising neuroprotective effect of IVA and the implication of autophagy and Rhes/m-Tor pathways in the 3-NP induced HD and highlight the fact that nano formulations of IVA would be an auspicious approach in HD therapy.


Assuntos
Fármacos Cardiovasculares/administração & dosagem , Doença de Huntington/induzido quimicamente , Ivabradina/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Serina-Treonina Quinases TOR/metabolismo , Animais , Autofagia , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Doença de Huntington/metabolismo , Masculino , Sistemas de Liberação de Fármacos por Nanopartículas , Nitrocompostos/administração & dosagem , Propionatos/administração & dosagem , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA