Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 22(40): 23169-23184, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33025980

RESUMO

Herein, we report the design and synthesis of four new thiophene-bridged D-π-A configured organic dyes T1-4 comprising different donors, π-spacers and anchoring units, as potential sensitizers and co-sensitizers for DSSCs. The current work also highlights their structural, photophysical, thermal, electrochemical, theoretical, and photoelectrochemical studies, including evaluation of their structure-property relationships. The optical results revealed that the dyes T1-4 display λabs and λemi in the range of 402-461 nm and 556-575 nm, respectively, with a bandgap in the order of 2.31-2.58 eV. Furthermore, the results showed that the dyes possess all the pre-requisites to act as sensitizers/co-sensitizers. Among the tested dyes, the device based on sensitizer T2 achieved the highest PCE compared to the other three dyes, under the standard conditions. Furthermore, their co-sensitized devices were fabricated by co-adsorbing them with the well-known Ru-based MH-12 sensitizer and interestingly the co-sensitizer T3 carrying an alkoxy group and a barbituric acid anchor displayed the highest PCE of 8.79%, which is much higher than that of MH-12 alone (8.18%). Conclusively, the study furnishes a deeper understanding of the intricacies involved in the structural modification of sensitizers/co-sensitizers in achieving an enhanced performance of the devices.

2.
Phys Chem Chem Phys ; 21(20): 10603-10613, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31074755

RESUMO

Herein, we report the design, synthesis and characterization of a new series of simple donor-π spacer-acceptor/anchor (D-π-A) type diphenylamine based metal-free organic dyes possessing three different anchoring groups, viz. 4-aminobenzoic acid (DTP), 2-(4-nitrophenyl)acetonitrile (DTN), and barbituric acid (DTB), connected with 2-(thiophene-2-yl)-acetonitrile, as effective sensitizers and co-sensitizers in Dye Sensitized Solar Cells (DSSCs). They were subjected to photophysical, electrochemical and theoretical studies. The dyes exhibited characteristic λabs and λemi in the range of 445-485 and 545-570 nm, respectively. Both optical and electrochemical band gaps were found to be in the range of 2.2 to 2.35 eV. The driving forces for injection (ΔGinj), recombination (ΔGrec) and regeneration (ΔGreg) processes were evaluated to understand their feasibility. Finally, the DSSC devices were fabricated employing the new dyes as sensitizers as well as co-sensitizers along with the Ru(ii) based N3 dye. Interestingly, DTP carrying 4-aminobenzoic acid as the anchoring group shows the best photoelectrochemical performance, viz. photovoltaic conversion efficiency (PCE) = 4.4%, open circuit potential (VOC) = 0.577 V, and short-circuit current density (JSC) = 9.06 mA cm-2 with a broad incident photon conversion efficiency (IPCE) spectrum. Co-sensitization of the dyes brought about enhanced VOC values, compared to the N3 dye alone. Finally, different interface resistance values obtained from the electrochemical impedance spectroscopy (EIS) circuit fitting were used to study the fundamental processes of energy conversion.

3.
RSC Adv ; 10(47): 27940-27953, 2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35685026

RESUMO

A new bipyridyl Ru(ii) sensitizer incorporating triphenylamine and the 3,4-ethylenedioxythiophene (EDOT) ancillary ligand IMA5 was synthesized for dye-sensitized solar cells (DSSCs). The performance of these DSSCs has been enhanced via di-anchoring metal-free organic sensitizers, denoted IMA1-4, with structural motif A-π-D-π-A and incorporating phenyl-dibenzothiophene-phenyl (Ph-DBT-Ph) as the main building block but with different anchoring groups (A). These new organic sensitizers were well-characterized and used as efficient co-sensitizers. Their photophysical, electrochemical and photovoltaic properties were studied. Furthermore, molecular modeling studies using DFT calculations were used to investigate their suitability as effective sensitizers/co-sensitizers. The molecular orbital isodensity showed distinguishable delocalization of the intramolecular charge in the DBT moiety. The photovoltaic characterization showed that IMA3 had the best DSSC performance (η = 2.41%). In addition, IMA1-4 was co-sensitized in conjunction with the newly synthesized IMA5 complex to enhance light harvesting across expanded spectral regions and thus improve efficiency. The solar cells co-sensitized with IMA2, IMA3 and IMA4 exhibited improved efficiency (η) of 6.25, 6.19 and 5.83%, respectively, which outperformed the device employing IMA5 alone (η = 5.54%) owing to the improvement in the loading of IMA2, IMA3 and IMA4 in the presence of IMA5 on the surface of the TiO2 nanoparticles, and charge recombination was suppressed.

4.
RSC Adv ; 10(1): 610-619, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-35492570

RESUMO

A novel Ru(ii) complex, denoted as IA-7, incorporating a bulky donor antenna, was synthesized and characterized as a promising inexpensive alternative to conventional p-n junction solar cells to study the influence of a bulky donor antenna on the light harvesting efficiency (LHE), ground and excited state oxidation potentials and total conversion efficiency of sunlight to electricity (% η) for dye-sensitized solar cells (DSSCs), and the device performance was compared to devices with MH-12 and MH-13 dyes. The incorporation of the bulky donor enriched triphenylamine (TPA) antenna resulted in a considerable increase in J SC and η values for DSSCs, where IA-7 outperformed MH-12 and MH-13 in terms of the total conversion efficiency and achieved a power conversion efficiency (η) of 8.86% under full sunlight irradiation (100 mW cm-2), compared to 8.09% for MH-12 and 8.53% for MH-13, which can be ascribed to the high open circuit voltage (V OC) of IA-7. Molecular engineering utilizing DFT/TD-DFT was employed to calculate the electronic properties of IA-7, including the HOMO/LUMO isosurfaces, the lowest singlet-singlet electronic transitions (E 0-0), and the ground and excited state oxidation potentials, which were in ideal agreement with the empirical results. The electronic distribution of IA-7 indicated that the HOMO is delocalized not only on Ru and NCS, but also on the substituted TPA, and the LUMO is delocalized over 4,4'-bipyridyl dicarboxylic acid.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA