Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
BMC Biotechnol ; 24(1): 3, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233817

RESUMO

The growing spread of infectious diseases has become a potential global health threat to human beings. According to WHO reports, in this study, we investigated the impact of co-cultivating the isolated endophytic fungus Aspergillus sp. CO2 and Bacillus sp. COBZ21 as a method to stimulate the production of natural bioactive substances. (GC/MS)-based metabolomics profiling of two sponge-associated microbes, Aspergillus sp. CO2 and Bacillus sp. COBZ21, revealed that the co-culture of these two isolates induced the accumulation of metabolites that were not traced in their axenic cultures. By detection of different activities of extracts of Bacillus sp. COBZ21 and Aspergillus sp. CO2 and coculture between Bacillus sp. COBZ21 and Aspergillus sp. CO2. It was noted that the coculture strategy was the reason for a notable increase in some different activities, such as the antimicrobial activity, which showed potent activity against Escherichia coli ATCC 25,922, Staphylococcus aureus NRRLB-767, and Candida albicans ATCC 10,231. The antibiofilm activity showed significant biofilm inhibitory activity toward Bacillus subtilis ATCC 6633, Pseudomonas aeruginosa ATCC 10,145, and Staph aureus NRRLB-767, with activity up to 53.66, 71.17, and 47.89%, while it showed low activity against E. coli ATCC 25,922, while the antioxidant activity based on the DPPH assay showed maximum activity (75.25%). GC-MS investigations revealed the presence of variable chemical constituents belonging to different chemical categories, which reflected their chemical diversity. The main components are (+-) cis-Deethylburnamine (2.66%), Bis(3,6,9,12-tetraoxapentaethylene) crowno-N,N,N',N'-tetra methylpphanediamine (2.48%), and 11-phenyl-2,4,6,8-tetra(2-thienyl)-11-aza-5,13-dithiaeteracyclo[7.3.0.1(2,8)0.0(3,7)] trideca-3,6-diene-10,12,13-trione (3.13%), respectively, for Bacillus sp. axenic culture, Aspergillus sp. CO2, Aspergillus sp. CO2, and Bacillus sp. COBZ21 coculture. By studying the ADME-related physicochemical properties of coculture extract, the compound showed log Po/w values above 5 (8.82). The solubility of the substance was moderate. In order to provide a comprehensive definition of medicinal chemistry and leadlikness, it is important to note that the latter did not meet the criteria outlined in the rule of three (RO3). The toxicity prediction of the coculture extract was performed using the ProTox II web server, which showed that the selected compound has no pronounced toxicity.


Assuntos
Anti-Infecciosos , Bacillus , Humanos , Bacillus/metabolismo , Antioxidantes/farmacologia , Dióxido de Carbono/metabolismo , Escherichia coli/metabolismo , Testes de Sensibilidade Microbiana , Anti-Infecciosos/química , Aspergillus/metabolismo , Staphylococcus aureus , Extratos Vegetais/farmacologia , Antibacterianos/farmacologia
2.
BMC Microbiol ; 24(1): 193, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831400

RESUMO

INTRODUCTION: Optimal exploitation of the huge amounts of agro-industrial residuals that are produced annually, which endangers the ecosystem and ultimately contributes to climate change, is one of the solutions available to produce value-added compounds. AIM AND OBJECTIVES: This study aimed at the economic production and optimization of surfactin. Therefore, the production was carried out by the microbial conversion of Potato Peel Waste (PPW) and Frying Oil Waste (FOW) utilizing locally isolated Bacillus halotolerans. Also, investigating its potential application as an antimicrobial agent towards some pathogenic strains. RESULTS: Screening the bacterial isolates for surfactin production revealed that the strain with the highest yield (49 g/100 g substrate) and efficient oil displacement activity was genetically identified as B. halotolerans. The production process was then optimized utilizing Central Composite Design (CCD) resulting in the amelioration of yield by 11.4% (from 49 to 55.3 g/100 g substrate) and surface tension (ST) by 8.3% (from 36 to 33 mN/m) with a constant level of the critical micelle concentration (CMC) at 125 mg/L. Moreover, the physiochemical characterization studies of the produced surfactin by FTIR, 1H NMR, and LC-MS/MS proved the existence of a cyclic lipopeptide (surfactin). The investigations further showed a strong emulsification affinity for soybean and motor oil (E24 = 50%), as well as the ability to maintain the emulsion stable over a wide pH (4-10) and temperature (10-100 °C) range. Interestingly, surfactin had a broad-spectrum range of inhibition activity against Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, klebsiella pneumonia, and Candida albicans. CONCLUSION: Subsequently, the screening of the isolates and the utilized food-processing wastes along with the extraction technique resulted in a high yield of surfactin characterized by acceptable ST and CMC levels. However, optimization of the cultural conditions to improve the activity and productivity was achieved using Factor-At-A-Time (OFAT) and Central Composite Design (CCD). In contrast, surface activity recorded a maximum level of (33 mN/n) and productivity of 55.3 g/100 g substrate. The optimized surfactin had also the ability to maintain the stability of emulsions over a wide range of pH and temperature. Otherwise, the obtained results proved the promising efficiency of the surfactin against bacterial and fungal pathogens.


Assuntos
Bacillus , Resíduos Industriais , Lipopeptídeos , Solanum tuberosum , Bacillus/metabolismo , Bacillus/genética , Bacillus/isolamento & purificação , Lipopeptídeos/farmacologia , Lipopeptídeos/metabolismo , Lipopeptídeos/biossíntese , Lipopeptídeos/química , Lipopeptídeos/isolamento & purificação , Solanum tuberosum/microbiologia , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/química , Peptídeos Cíclicos/isolamento & purificação , Peptídeos Cíclicos/biossíntese , Testes de Sensibilidade Microbiana , Anti-Infecciosos/farmacologia , Anti-Infecciosos/metabolismo , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Agricultura/métodos
3.
Toxicol Appl Pharmacol ; 486: 116939, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38643951

RESUMO

Idiopathic pulmonary fibrosis (IPF) is an irreversible disease which considered the most fatal pulmonary fibrosis. Pulmonary toxicity including IPF is the most severe adverse effect of bleomycin, the chemotherapeutic agent. Based on the fact that, exogenous surfactants could induce alveolar stabilization in many lung diseases, the aim of this study was to explore the effects of low cost biosurfactants, surfactin (SUR) and sophorolipids (SLs), against bleomycin-induced pulmonary fibrosis in mice due to their antioxidant, and anti-inflammatory properties. Surfactin and sophorolipids were produced by microbial conversion of frying oil and potato peel wastes using Bacillus halotolerans and Candida parapsilosis respectively. These biosurfactants were identified by FTIR, 1H NMR, and LC-MS/MS spectra. C57BL/6 mice were administered the produced biosurfactants daily at oral dose of 200 mg kg-1 one day after the first bleomycin dose (35 U/kg). We evaluated four study groups: Control, Bleomycin, Bleomycin+SUR, Bleomycin+SLs. After 30 days, lungs from each mouse were sampled for oxidative stress, ELISA, Western blot, histopathological, immunohistochemical analyses. Our results showed that the produced SUR and SLs reduced pulmonary oxidative stress and inflammatory response in the lungs of bleomycin induced mice as they suppressed SOD, CAT, and GST activities also reduced NF-κß, TNF-α, and CD68 levels. Furthermore, biosurfactants suppressed the expression of TGF-ß1, Smad-3, and p-JNK fibrotic signaling pathway in pulmonary tissues. Histologically, SUR and SLs protected against lung ECM deposition caused by bleomycin administration. Biosurfactants produced from microbial sources can inhibit the induced inflammatory and fibrotic responses in bleomycin-induced pulmonary fibrosis.


Assuntos
Anti-Inflamatórios , Antioxidantes , Bleomicina , Candida parapsilosis , Camundongos Endogâmicos C57BL , MicroRNAs , Fibrose Pulmonar , Proteína Smad3 , Tensoativos , Fator de Crescimento Transformador beta1 , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/prevenção & controle , Fibrose Pulmonar/patologia , Fibrose Pulmonar/metabolismo , Bleomicina/toxicidade , Antioxidantes/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Anti-Inflamatórios/farmacologia , Proteína Smad3/metabolismo , Camundongos , Candida parapsilosis/efeitos dos fármacos , Tensoativos/farmacologia , MicroRNAs/metabolismo , Masculino , Transdução de Sinais/efeitos dos fármacos , Bacillus , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ácidos Oleicos
4.
Chem Biodivers ; 21(8): e202400825, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38802323

RESUMO

Herein, we report analogues of s-indacene by the synthesis of novel indolizine derivatives. Using chloroform as an appropriate solvent, sixteen derivatives of pyrazolyl-indolizine (4--19) were prepared by the reaction of 3-(dimethylamino)-1-(1H-pyrrol-2-yl)prop-2-en-1-one (1) with hydrazonoyl chloride derivatives (2) in the presence of triethylamine in good to excellent yields. We used NMR spectra, IR, mass spectrometry, as well as elemental analyses to prove the chemical structures and the purity of the synthesized compounds 4-19. Among all tested compounds 5, 9, 13 and 19 had a potent antimicrobial efficiency against Bacillus subtilis, Staphylococcus aureus, Pseudomonas aerginousea, Sallmonella typhemerium, and Candida albicans. Furthermore, a significant increase in lipid peroxidation (LPO) toward the Gram-negative bacteria, Pseudomonas aeruginosa when treated with compound 9 was observed, while compound 13 remarkably increased the cell membrane oxidation of Salmonella typhimurium. Additionally, we utilized docking studies and in silico methods to evaluate the drug-likeness, physicochemical properties, and ADMET profiles of the compounds. The results of the molecular docking simulation revealed that the synthesized compounds displayed decreased binding energy when interacting with the active sites of important enzymes, including Sterol 14-demethylase of C. albicans, Dihydropteroate synthase of S. aureus, LasR of P. aeruginosa, Glucosamine-6-phosphate synthase of S. typhimurium, and Gyrase B of B. subtilis.


Assuntos
Candida albicans , Indolizinas , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Candida albicans/efeitos dos fármacos , Indolizinas/química , Indolizinas/farmacologia , Indolizinas/síntese química , Indolizinas/metabolismo , Pirazóis/química , Pirazóis/farmacologia , Pirazóis/síntese química , Pirazóis/metabolismo , Antibacterianos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Relação Estrutura-Atividade , Estrutura Molecular , Anti-Infecciosos/farmacologia , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Anti-Infecciosos/metabolismo , Bactérias/efeitos dos fármacos
5.
Arch Pharm (Weinheim) ; 357(6): e2300738, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38466125

RESUMO

The targeted compounds were prepared using both (9H-fluoren-9-ylidene)hydrazine (1) and 10H-phenothiazine (2) as starting materials. The treatment of 1 or 2 with different isocyanates afforded the title compounds 7a-d, 8a, and 8b in excellent yield. All compounds were characterized and ascertained by infrared, nuclear magnetic resonance, and elemental analyses as well as single-crystal X-ray diffraction. The antimicrobial efficiency of all was tested in vitro, and a noticeable inhibition activity against Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Candida albicans was obtained by compounds 7a, 7b, 8a, and 8b. Moreover, the biofilm mechanism activity was strongly inhibited by compounds 7b and 8b for all bacterial pathogens, with a percentage ratio of more than 55%. The findings from the molecular docking simulation revealed that compounds 7a, 7b, 8a, and 8b exhibited favorable binding energies and interacted effectively with the active sites of sterol 14-demethylase, dihydropteroate synthase, gyrase B, LasR (major transcriptional activator of P. aeruginosa), and carbapenemase for C. albicans, S. aureus, B. subtills, K. pneumoniae, and P. aeruginosa, respectively. These results suggest that the compounds have the potential to inhibit the activity of these enzymes and demonstrate promising antimicrobial properties. Moreover, the in silico evaluation of drug likeness and absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiles for compounds 7a, 7b, 8a, and 8b demonstrated their compatibility with Lipinski's, Ghose's, Veber's, Muegge's, and Egan's rules. These findings suggest that these compounds possess favorable physicochemical properties, making them promising candidates for continued drug development efforts.


Assuntos
Antibacterianos , Candida albicans , Desenho de Fármacos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Antibacterianos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Candida albicans/efeitos dos fármacos , Estrutura Molecular , Biofilmes/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , Antifúngicos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Relação Dose-Resposta a Droga
6.
Microb Cell Fact ; 22(1): 24, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36747200

RESUMO

Bacterial Cellulose (BC) is still the most renewable available biopolymer produced in fine nature from alternative microbial sources as bacteria. In the present study, newly BC producing bacteria were successfully isolated from acidic fruits. The most potent producer was isolated from strawberry and identified genetically using 16 s rRNA technique as Achromobacter S3. Different fruit peels were screened to produce BC using the cheapest culture medium. Among them, Mango peel waste (MPW) hydrolysate proved to be the significant inducible alternative medium without any extra nutrients for the maximum productivity. Improvement of the BC yield was successfully achieved via statistical optimization of the MPW culture medium, from 0.52 g/L to 1.22 g/L with 2.5-fold increased about the standard HS culture medium. Additionally, the physicochemical analysis affirmed the cellulose molecular structure as well as observed the crystallinity of nanofiber as 72 and 79% for BC produced by Achromobacter S33 on HS and MPW media, respectively. Moreover, the topographical study illustrated that the BC nanofibers had close characteristics upon fiber dimeter and length as about 10 and 200 nm, respectively.


Assuntos
Celulose , Mangifera , Biopolímeros , Meios de Cultura/química
7.
Microb Cell Fact ; 22(1): 1, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36593499

RESUMO

Two laccase isoenzymes (LacA and LacB) were isolated from a novel Trichoderma harzianum S7113 isolate employing ammonium sulfate precipitation, Sephadex G100, and DEAE Sepharose ion exchange chromatography. The molecular weights of the purified LacA and LacB laccases were estimated to be 63 and 48 kDa, respectively. The two isoenzymes had their optimum activities at the same temperature (50 °C), but at slightly different pH values (pH 3.0 for LacA and pH 2.5 for LacB). LacA and LacB had the same thermal stability at 40 °C and pH stability at pH 9.0. The two isoenzymes also showed a high level of specific activity toward ABTS, where the Km values of LacA and LacB were 0.100 and 0.065 mM, whereas their Vmax values were 0.603 and 0.182 µmol min-1, respectively. LacA and LacB catalytic activity was stimulated by Mg2+, Zn2+, K+, and Ni2+, whereas it was inhibited by Hg2+ and Pb2+, ß-mercaptoethanol, EDTA, and SDS, and completely inhibited by sodium azide. Our findings indicate that purified laccase has a promising capacity for bisphenol A (BPA) bioremediation across a broad pH range. This finding opens up new opportunities for the commercialization of this technique in a variety of biotechnology-based applications, particularly for removing endocrine chemicals from the environment.


Assuntos
Isoenzimas , Lacase , Lacase/metabolismo , Isoenzimas/metabolismo , Fenóis , Concentração de Íons de Hidrogênio , Estabilidade Enzimática , Temperatura
8.
Microb Cell Fact ; 22(1): 8, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635695

RESUMO

Purification of L-methionine γ-lyase (MGL) from A. fumigatus was sequentially conducted using heat treatment and gel filtration, resulting in 3.04 of purification fold and 73.9% of enzymatic recovery. The molecular mass of the purified MGL was approximately apparent at 46 KDa based on SDS-PAGE analysis. The enzymatic biochemical properties showed a maximum activity at pH 7 and exhibited plausible stability within pH range 5.0-7.5; meanwhile the highest catalytic activity of MGL was observed at 30-40 °C and the enzymatic stability was noted up to 40 °C. The enzyme molecule was significantly inhibited in the presence of Cu2+, Cd2+, Li2+, Mn2+, Hg2+, sodium azide, iodoacetate, and mercaptoethanol. Moreover, MGL displayed a maximum activity toward the following substrates, L-methionine < DL-methionine < Ethionine < Cysteine. Kinetic studies of MGL for L-methioninase showed catalytic activity at 20.608 mM and 12.34568 µM.min-1. Furthermore, MGL exhibited anticancer activity against cancerous cell lines, where IC50 were 243 ± 4.87 µg/ml (0.486 U/ml), and 726 ± 29.31 µg/ml (1.452 U/ml) against Hep-G2, and HCT116 respectively. In conclusion, A. fumigatus MGL had good catalytic properties along with significantly anticancer activity at low concentration which makes it a probably candidate to apply in the enzymotherapy field.


Assuntos
Aspergillus fumigatus , Liases de Carbono-Enxofre , Aspergillus fumigatus/metabolismo , Cinética , Liases de Carbono-Enxofre/química , Liases de Carbono-Enxofre/metabolismo , Metionina
9.
Microb Cell Fact ; 22(1): 192, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735405

RESUMO

Microbial degradation of synthetic dyes is considered a promising green dye detoxification, cost-effective and eco-friendly approach. A detailed study on the decolorization and degradation of malachite green dye (MG) using a newly isolated Pseudomonas plecoglossicide MG2 was carried out. Optimization of MG biodegradation by the tested organism was investigated by using a UV-Vis spectrophotometer and the resultant degraded products were analyzed by liquid chromatography-mass spectrometry and FTIR. Also, the cytotoxicity of MG degraded products was studied on a human normal retina cell line. The optimum conditions for the significant maximum decolorization of MG dye (90-93%) by the tested organism were pH 6-7, inoculum size 4-6%, and incubation temperature 30-35 °C, under static and aerobic conditions. The performance of Pseudomonas plecoglossicide MG2 grown culture in the bioreactors using simulated wastewater was assessed. MG degradation (99% at 100 and 150 mg MG/l at an optimal pH) and COD removal (95.95%) by using Pseudomonas plecoglossicide MG2 culture were the best in the tested culture bioreactor in comparison with that in activated sludge or tested culture-activated sludge bioreactors.The FTIR spectrum of the biodegraded MG displayed significant spectral changes, especially in the fingerprint region 1500-500 as well as disappearance of some peaks and appearance of new peaks. Twelve degradation intermediates were identified by LC-MS. They were desmalachite green, didesmalachite green, tetradesmalachite green, 4-(diphenylmethyl)aniline, malachite green carbinol, bis[4-(dimethylamino)phenyl]methanone, [4-(dimethylamino)phenyl][4-(methyl-amino)phenyl]methanone, bis[4-(methylamino)phenyl]methanone, (4-amino- phenyl)[4-(methylamino)phenyl]methanone, bis(4-amino phenyl)methanone, (4-amino phenyl)methanone, and 4-(dimathylamino)benzaldehyde. According to LC-MS and FTIR data, two pathways for MG degradation by using Pseudomonas plecoglossicide MG2 were proposed. MG showed cytotoxicity to human normal retina cell line with LC50 of 28.9 µg/ml and LC90 at 79.7 µg/ml. On the other hand, MG bio-degraded products showed no toxicity to the tested cell line. Finally, this study proved that Pseudomonas plecoglossicide MG2 could be used as an efficient, renewable, eco-friendly, sustainable and cost-effective biotechnology tool for the treatment of dye wastewater effluent.


Assuntos
Esgotos , Águas Residuárias , Humanos , Corantes , Reatores Biológicos , Pseudomonas
10.
Microb Cell Fact ; 22(1): 79, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37095542

RESUMO

BRIEF INTRODUCTION: Mucormycosis disease, which has recently expanded with the Covid 19 pandemic in many countries, endangers patients' lives, and treatment with common drugs is fraught with unfavorable side effects. AIM AND OBJECTIVES: This study deals with the economic production of sophorolipids (SLs) from different eight fungal isolates strains utilizing potato peels waste (PPW) and frying oil waste (FOW). Then investigate their effect against mucormycetes fungi. RESULTS: The screening of the isolates for SLs production revealed the highest yield (39 g/100 g substrate) with most efficiency was related to a yeast that have been identified genetically as Candida parapsilosis. Moreover, the characterizations studies of the produced SLs by FTIR, 1H NMR and LC-MS/MS proved the existence of both acidic and lactonic forms, while their surface activity was confirmed by the surface tension (ST) assessment. The SLs production was optimized utilizing Box-Behnken design resulting in the amelioration of yield by 30% (55.3 g/100 g substrate) and ST by 20.8% (38mN/m) with constant level of the critical micelle concentration (CMC) at 125 mg/L. The studies also revealed the high affinity toward soybean oil (E24 = 50%), in addition to maintaining the emulsions stability against broad range of pH (4-10) and temperature (10-100℃). Furthermore, the antifungal activity against Mucor racemosus, Rhizopus microsporus, and Syncephalastrum racemosum proved a high inhibition efficiency of the produced SLs. CONCLUSION: The findings demonstrated the potential application of the SLs produced economically from agricultural waste as an effective and safer alternative for the treatment of infection caused by black fungus.


Assuntos
COVID-19 , Mucorales , Solanum tuberosum , Humanos , Candida parapsilosis , Cromatografia Líquida , Espectrometria de Massas em Tandem
11.
Chem Biodivers ; 20(11): e202300804, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37933986

RESUMO

Bacterial virulence becomes a significant challenge for clinical treatments, particularly those characterized as Multi-Drug-Resistant (MDR) strains. Therefore, the preparation of new compounds with active moieties could be a successful approach for eradication of MDR strains. For this purpose, newly synthesized quinoline compounds were prepared and tested for their antimicrobial activity against Methicillin-Resistant Staphylococcus Aureus (MRSA) and Pseudomonas Aeruginosa (PA). Among the synthesized derivatives, compounds 1-(quinolin-2-ylamino)pyrrolidine-2,5-dione (8) and 2-(2-((5-methylfuran-2-yl)methylene)hydrazinyl)quinoline (12) were shown to possess the highest antimicrobial activity with the minimum inhibitory concentration with the values of 5±2.2 and10±1.5 µg/mL towards Pseudomonas aeruginosa without any activity towards MRSA. Interestingly, compounds 2-(2-((1H-indol-3-yl)methylene)hydrazinyl)quinoline (13) and 2-(4-bromophenyl)-3-(quinolin-2-ylamino)thiazolidin-4-one (16c) showed significant inhibition activity against Staphylococcus aureus MRSA and Pseudomonas aeruginosa. Compound 13 (with indole moiety) particularly displayed excellent bactericidal activity with low MIC values 20±3.3 and 10±1.5 µg/mL against Staphylococcus aureus MRSA and Pseudomonas aeruginosa, respectively. Effects molecular modelling was used to determine the mode of action for the antimicrobial effect. The stability of complexes formed by docking and target-ligand pairing was evaluated using molecular dynamics simulations. The compounds were also tested for binding affinity to the target protein using MM-PBSA. Density-functional theory (DFT) calculations were also used to investigate the electrochemical properties of various compounds.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Quinolinas , Simulação de Dinâmica Molecular , Pseudomonas aeruginosa , Antibacterianos/química , Staphylococcus aureus , Testes de Sensibilidade Microbiana , Quinolinas/farmacologia , Quinolinas/química , Simulação de Acoplamento Molecular
12.
Molecules ; 27(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35056655

RESUMO

A new series of 1,3,4-thiadiazoles was synthesized by the reaction of methyl 2-(4-hydroxy-3-methoxybenzylidene) hydrazine-1-carbodithioate (2) with selected derivatives of hydrazonoyl halide by grinding method at room temperature. The chemical structures of the newly synthesized derivatives were resolved from correct spectral and microanalytical data. Moreover, all synthesized compounds were screened for their antimicrobial activities using Escherichia coli, Pseudomonas aeruginosa, Proteus vulgaris, Bacillus subtilis, Staphylococcus aureus, and Candida albicans. However, compounds 3 and 5 showed significant antimicrobial activity against all tested microorganisms. The other prepared compounds exhibited either only antimicrobial activity against Gram-positive bacteria like compounds 4 and 6, or only antifungal activity like compound 7. A molecular docking study of the compounds was performed against two important microbial enzymes: tyrosyl-tRNA synthetase (TyrRS) and N-myristoyl transferase (Nmt). The tested compounds showed variety in binding poses and interactions. However, compound 3 showed the best interactions in terms of number of hydrogen bonds, and the lowest affinity binding energy (-8.4 and -9.1 kcal/mol, respectively). From the in vitro and in silico studies, compound 3 is a good candidate for the next steps of the drug development process as an antimicrobial drug.


Assuntos
Anti-Infecciosos/síntese química , Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Simulação por Computador , Fungos/efeitos dos fármacos , Solventes/química , Tiadiazóis/química
13.
Mar Drugs ; 19(4)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33924262

RESUMO

Epicotripeptin (1), a new cyclic tripeptide along with four known cyclic dipeptides (2-5) and one acetamide derivative (6) were isolated from seagrass-associated endophytic fungus Epicoccum nigrum M13 recovered from the Red Sea. Additionally, two new compounds, cyclodidepsipeptide phragamide A (7) and trioxobutanamide derivative phragamide B (8), together with eight known compounds (9-16), were isolated from plant-derived endophyte Alternaria alternata 13A collected from a saline lake of Wadi El Natrun depression in the Sahara Desert. The structures of the isolated compounds were determined based on the 1D and 2D NMR spectroscopic data, HRESIMS data, and a comparison with the reported literature. The absolute configurations of 1 and 7 were established by advanced Marfey's and Mosher's ester analyses. The antimicrobial screening indicated that seven of the tested compounds exhibited considerable (MIC range of 2.5-5 µg/mL) to moderate (10-20 µg/mL) antibacterial effect against the tested Gram-positive strains and moderate to weak (10-30 µg/mL) antibacterial effect against Gram-negative strains. Most of the compounds exhibited weak or no activity against the tested Gram-negative strains. On the other hand, four of the tested compounds showed considerable antibiofilm effects against biofilm forming Gram-positive and Gram-negative strains.


Assuntos
Alternaria/metabolismo , Antibacterianos/farmacologia , Ascomicetos/metabolismo , Biofilmes/efeitos dos fármacos , Bactérias Aeróbias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Antibacterianos/isolamento & purificação , Biofilmes/crescimento & desenvolvimento , Fermentação , Bactérias Aeróbias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Positivas/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade
14.
Prep Biochem Biotechnol ; 51(9): 926-935, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33529084

RESUMO

Silver nanoparticles (AgNPs) were synthesized using extracellular filtrates of some Lysinibacillus sphaericus (Ls) strains under simple conditions. Ls synthesized AgNPs showed the optical absorption peaks at 388-412 nm as detected by UV-visible spectrophotometer. Transmission electron micrographs of bacterial synthesized AgNPs revealed that they were polycrystalline with spherical, hexagonal, cuboidal, rod and irregular shapes. The average diameter of the tested AgNPs were ranged from 14-21 nm and they were negatively charged as detected by DLS (-18.2 to -28.9). FTIR spectra showed the presence of nitrogenous biomolecules capping the synthesized AgNPs. The filtrates of tested Ls strains showed nitrate reductase activity (1.45-2.56 µmol/ml/min). Tested AgNPs showed bactericidal activity against Gram positive and Gram negative bacteria, fungicidal activity against yeast and filamentous fungi, and virucidal activity against rotavirus. In addition, it showed synergistic antimicrobial effect to cephradine and nizoarm against all tested microorganisms. Cytotoxicity test revealed the safety of the tested nanoparticles at tested concentrations.Finally, Ls strains represent microbial sources for ecofriendly, simple and economic biosynthesis of antimicrobial AgNPs. Also, this research may contribute to the medicinal chemistry and pharmaceutical industry for the development of new products used for the public health.


Assuntos
Anti-Infecciosos , Bacillaceae/química , Nanopartículas Metálicas/química , Prata , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Prata/química , Prata/farmacologia
15.
Molecules ; 26(12)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200763

RESUMO

The development of new antimicrobial strategies that act more efficiently than traditional antibiotics is becoming a necessity to combat multidrug-resistant pathogens. Here we report the efficacy of laser-light-irradiated 5,10,15,20-tetrakis(m-hydroxyphenyl)porphyrin (mTHPP) loaded onto an ethylcellulose (EC)/chitosan (Chs) nanocomposite in eradicating multi-drug resistant Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans. Surface loading of the ethylcelllose/chitosan composite with mTHPP was carried out and the resulting nanocomposite was fully characterized. The results indicate that the prepared nanocomposite incorporates mTHPP inside, and that the composite acquired an overall positive charge. The incorporation of mTHPP into the nanocomposite enhanced the photo- and thermal stability. Different laser wavelengths (458; 476; 488; 515; 635 nm), powers (5-70 mW), and exposure times (15-45 min) were investigated in the antimicrobial photodynamic therapy (aPDT) experiments, with the best inhibition observed using 635 nm with the mTHPP EC/Chs nanocomposite for C. albicans (59 ± 0.21%), P. aeruginosa (71.7 ± 1.72%), and S. aureus (74.2 ± 1.26%) with illumination of only 15 min. Utilization of higher doses (70 mW) for longer periods achieved more eradication of microbial growth.


Assuntos
Antibacterianos/química , Celulose/análogos & derivados , Quitosana/química , Nanocompostos/química , Porfirinas/química , Piridonas/química , Pirróis/química , Animais , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Linhagem Celular , Celulose/química , Chlorocebus aethiops , Lasers , Luz , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Células Vero
16.
Arch Microbiol ; 202(1): 63-75, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31485713

RESUMO

Silver nanoparticles (AgNPs) were synthesized using cell-free filtrates of some mosquitocidal Bacilli. They showed the optical absorption peaks at 386-412 nm. They were polycrystalline spherical, hexagonal, cuboidal, rod and anisotropic shapes as detected by TEM. These nanoparticles were negatively charged with sizes ranging from 15 to 21 nm average diameter as detected by DLS. FTIR spectra showed that the main absorption bands of biomolecules capping AgNPs appeared at average wave numbers of 3435 cm-1 [ν(N-H) of amide A overlapped by ν(O-H)], 1631 cm-1 [(ν(C=O) of amide I], 1396 cm-1 [ν(C-N) of amide I], 2929 cm-1 (aliphatic C-H) and 1040 cm-1 (C-C-O). FTIR spectra confirmed the presence of protein biomolecules in the bacterial filtrate-formed coat covering AgNPs through free amide groups resulting in their stabilization in the aqueous medium. Nitrate reductase activity was found in all tested bacterial filtrates and ranged from 1.66 to 2.51 µmol/ml/min. These findings point to the probable role of nitrate reductase in reducing silver ions to silver nanoparticles and their stabilization. Tested AgNPs were multi-bioactive nanometals and showed mosquitocidal, bactericidal, fungicidal and virucidal activities. In addition, they exhibited highly synergistic mosquitocidal effect to spore toxin complex of mosquitocidal Bacilli at a very low concentration. AgNPs exhibited activities that were not or slightly cytotoxic to MA 104 cell line at tested concentrations. Therefore, they can be applied in the medical field. Finally, this study offered a simple, highly efficient, eco-friendly, economic method for biosynthesis of multi-bioactive AgNPs by some mosquitocidal Bacilli.


Assuntos
Bacillus/fisiologia , Nanopartículas Metálicas/química , Prata/química , Prata/farmacologia , Animais , Antibacterianos/química , Bacillus/enzimologia , Bacillus/metabolismo , Linhagem Celular , Chlorocebus aethiops , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão , Nitrato Redutase/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
18.
Sci Rep ; 14(1): 2804, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38307930

RESUMO

This work aimed at tailoring of different properties of antibacterial drug delivery Ca-phosphate cements by incorporation of bioactive glass (BG). The cements were prepared from beta-tricalcium phosphate cement (ß-TCP) and BG based on 50 SiO2-20 CaO-15 Na2O-7 B2O3-4 P2O5-4 Al2O3 wt% with different percentages of BG [5, 10, 15, and 20% (w/w)]. The composite cements were characterized by XRD, FTIR, and TEM. Moreover, in vitro bioactivity and biodegradation were evaluated in the simulated body fluid (SBF) at 37 °C. In addition, physical properties and mechanical strength were determined. Also, the effect of glass addition on the drug release profile was examined using gentamicin. Finally, the antimicrobial activity was studied against Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumonia bacteria, one unicellular fungal strain (Candida albicans), and one multicellular fungal strain (Mucor racemosus). The results showed that after soaking in SBF, the compression strength values ranged from 14 to 36 MPa, the bulk densities and porosities were within 1.35 to 1.49 g/cm3 and 51.3 to 44.71%, respectively. Furthermore, gentamicin was released in a sustained manner, and BG decreased the released drug amount from ~ 80% (in pure ß-TCP) to 47-53% in the composite cements. A drug release profile that is sustained by all samples was achieved. The antimicrobial test showed good activity of gentamicin-conjugated cements against bacteria and fungi used in this study. Additionally, cytotoxicity results proved that all samples were safe on MG-63 cells up to 50 µg/mL with no more than 7-12% dead cells. From the view of the physico-mechanical properties, bioactivity, biodegradation, and drug release rate, 20BG/ß-TCP sample was nominated for practical bone grafting material, where it showed appropriate setting time and a relatively high mechanical strength suitable for cancellous bone.


Assuntos
Antibacterianos , Cimentos Ósseos , Cimentos Ósseos/farmacologia , Antibacterianos/farmacologia , Dióxido de Silício , Fosfatos de Cálcio , Vidro , Gentamicinas/farmacologia , Teste de Materiais
19.
Sci Rep ; 14(1): 15441, 2024 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965246

RESUMO

A very practical method for the synthesis of unsymmetrical carbamide derivatives in good to excellent yield was presented, without the need for any catalyst and at room temperature. Using a facile and robust protocol, fifteen unsymmetrical carbamide derivatives (9-23) bearing different aliphatic amine moieties were designed and synthesized by the reaction of secondary aliphatic amines with isocyanate derivatives in the presence of acetonitrile as an appropriate solvent in good to excellent yields. Trusted instruments like IR, mass spectrometry, NMR spectra, and elemental analyses were employed to validate the purity and chemical structures of the synthesized compounds. All the synthesized compounds were tested as antimicrobial agents against some clinically bacterial pathogens such as Salmonella typhimurium, Bacillus subtilis, Pseudomonas aeruginosa, Staphylococcus aureus and Candida albicans. Compounds 15, 16, 17, 19 and 22 showed potent antimicrobial activity with promising MIC values compared to the positive controls. Moreover, compounds 15 and 22 provide a potent lipid peroxidation (LPO) of the bacterial cell wall. On the other hand, we investigated the anti-proliferative activity of compounds 9-23 against selected human cancerous cell lines of breast (MCF-7), colon (HCT-116), and lung (A549) relative to healthy noncancerous control skin fibroblast cells (BJ-1). The mechanism of their cytotoxic activity has been also examined by immunoassaying the levels of key anti- and pro-apoptotic protein markers. The results of MTT assay revealed that compounds 10, 13, 21, 22 and 23 possessed highly cytotoxic effects. Out of these, three synthesized compounds 13, 21 and 22 showed cytotoxicity with IC50 values (13, IC50 = 62.4 ± 0.128 and 22, IC50 = 91.6 ± 0.112 µM, respectively, on MCF-7), (13, IC50 = 43.5 ± 0.15 and 21, IC50 = 38.5 ± 0.17 µM, respectively, on HCT-116). Cell cycle and apoptosis/necrosis assays demonstrated that compounds 13 and 22 induced S and G2/M phase cell cycle arrest in MCF-7 cells, while only compound 13 had this effect on HCT-116 cells. Furthermore, compound 13 exhibited the greatest potency in inducing apoptosis in both cell lines compared to compounds 21 and 22. Docking studies indicated that compounds 10, 13, 21 and 23 could potentially inhibit enzymes and exert promising antimicrobial effects, as evidenced by their lower binding energies and various types of interactions observed at the active sites of key enzymes such as Sterol 14-demethylase of C. albicans, Dihydropteroate synthase of S. aureus, LasR of P. aeruginosa, Glucosamine-6-phosphate synthase of K. pneumenia and Gyrase B of B. subtilis. Moreover, 13, 21, and 22 demonstrated minimal binding energy and favorable affinity towards the active pocket of anticancer receptor proteins, including CDK2, EGFR, Erα, Topoisomerase II and VEGFFR. Physicochemical properties, drug-likeness, and ADME (absorption, distribution, metabolism, excretion, and toxicity) parameters of the selected compounds were also computed.


Assuntos
Anti-Infecciosos , Antineoplásicos , Testes de Sensibilidade Microbiana , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Química Verde/métodos , Proliferação de Células/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Simulação de Acoplamento Molecular , Células MCF-7 , Antibacterianos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Staphylococcus aureus/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos
20.
Int J Biol Macromol ; 224: 634-645, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36302487

RESUMO

Targeting cancer metabolic processes has increased interest over the last century. Cancer cells have an enhanced proliferation rate that requires high quantities of amino acids, including arginine. Therefore, arginine deprivation by L-arginase impairs tumor growth resulting in cell death. In the present study, L-arginine amidinohydrolase (L-arginase) from Streptomyces diastaticus was purified successfully by heat treatment, ethanol precipitation, and Sephadex G75-120 column. The molecular mass of the purified enzyme was 39 kDa. It showed maximum activity at pH 9.0 and a temperature of 50 °C. Moreover, the enzyme stability was observed at temperatures up to 50 °C and a pH range of 7.5 to 9.0. Then, the potential cytotoxicity of L-arginase was examined. L-arginase has an IC50 value of 595 µg/ml for MCF-7 (breast adenocarcinoma cells), 915 µg/ml for HepG2 (hepatocellular carcinoma cells), and 1200 µg/ml for SW620 cells (colorectal carcinoma cells) at 72 h post-treatment. Noteworthy, MCF-7 showed the lowest IC50 value of arginase treatment, therefore was further investigated for the underlying cytotoxic mechanisms using flow cytometric analysis of cell-cycle distribution, apoptosis, and autophagy. Moreover, SI values indicating a high selective cytotoxicity of arginase toward MCF-7 cells. L-arginase induced significant cell cycle arrest at the G1 phase, and no apparent apoptosis was detected. Interestingly, arginine deprivation by arginase leads to a prominent activation of autophagy in the apoptosis defected MCF-7 cells. Moreover, treatment with arginase significantly attenuated MCF-7 cell migration compared with control medium-treated cells. Collectively, L-arginase might potentially be involved in treating breast cancer.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Arginase/química , Apoptose , Fase G1 , Linhagem Celular Tumoral , Autofagia , Arginina/metabolismo , Proliferação de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA