Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Infect Dis ; 229(4): 1200-1208, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37740554

RESUMO

BACKGROUND: Linezolid is evaluated in novel treatment regimens for tuberculous meningitis (TBM). Linezolid pharmacokinetics have not been characterized in this population, particularly in cerebrospinal fluid (CSF), as well as, following its co-administration with high-dose rifampicin. We aimed to characterize linezolid plasma and CSF pharmacokinetics in adults with TBM. METHODS: In the LASER-TBM pharmacokinetic substudy, the intervention groups received high-dose rifampicin (35 mg/kg) plus 1200 mg/day of linezolid for 28 days, which was then reduced to 600 mg/day. Plasma sampling was done on day 3 (intensive) and day 28 (sparse). A lumbar CSF sample was obtained on both visits. RESULTS: Thirty participants contributed 247 plasma and 28 CSF observations. Their median age and weight were 40 years (range, 27-56) and 58 kg (range, 30-96). Plasma pharmacokinetics was described by a 1-compartment model with first-order absorption and saturable elimination. Maximal clearance was 7.25 L/h, and the Michaelis-Menten constant was 27.2 mg/L. Rifampicin cotreatment duration did not affect linezolid pharmacokinetics. CSF-plasma partitioning correlated with CSF total protein up to 1.2 g/L, where the partition coefficient reached a maximal value of 37%. The plasma-CSF equilibration half-life was ∼3.5 hours. CONCLUSIONS: Linezolid was readily detected in CSF despite high-dose rifampicin coadministration. These findings support continued clinical evaluation of linezolid plus high-dose rifampicin for the treatment of TBM in adults. Clinical Trials Registration. ClinicalTrials.gov (NCT03927313).


Assuntos
Rifampina , Tuberculose Meníngea , Adulto , Humanos , Linezolida/uso terapêutico , Tuberculose Meníngea/tratamento farmacológico , Líquido Cefalorraquidiano
2.
J Infect Dis ; 226(1): 147-156, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35091749

RESUMO

BACKGROUND: Plasma bedaquiline clearance is reportedly more rapid with African ancestry. Our objective was to determine whether genetic polymorphisms explained between-individual variability in plasma clearance of bedaquiline, its M2 metabolite, and clofazimine in a cohort of patients treated for drug-resistant tuberculosis in South Africa. METHODS: Plasma clearance was estimated with nonlinear mixed-effects modeling. Associations between pharmacogenetic polymorphisms, genome-wide polymorphisms, and variability in clearance were examined using linear regression models. RESULTS: Of 195 cohort participants, 140 were evaluable for genetic associations. Among 21 polymorphisms selected based on prior genome-wide significant associations with any drug, rs776746 (CYP3A5∗3) was associated with slower clearance of bedaquiline (P = .0017) but not M2 (P = .25). CYP3A5∗3 heterozygosity and homozygosity were associated with 15% and 30% slower bedaquiline clearance, respectively. The lowest P value for clofazimine clearance was with VKORC1 rs9923231 (P = .13). In genome-wide analyses, the lowest P values for clearance of bedaquiline and clofazimine were with RFX4 rs76345012 (P = 6.4 × 10-7) and CNTN5 rs75285763 (P = 2.9 × 10-8), respectively. CONCLUSIONS: Among South Africans treated for drug-resistant tuberculosis, CYP3A5∗3 was associated with slower bedaquiline clearance. Different CYP3A5∗3 frequencies among populations may help explain the more rapid bedaquiline clearance reported in Africans. Associations with RFX4 and CNTN5 are likely by chance alone.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Clofazimina/uso terapêutico , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/farmacologia , Citocromo P-450 CYP3A/uso terapêutico , Diarilquinolinas/farmacologia , Diarilquinolinas/uso terapêutico , Estudo de Associação Genômica Ampla , Humanos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/genética , Farmacogenética , África do Sul , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Vitamina K Epóxido Redutases
3.
J Antimicrob Chemother ; 77(7): 1949-1959, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35466379

RESUMO

OBJECTIVES: Ethambutol protects against the development of resistance to co-administered drugs in the intensive phase of first-line anti-TB treatment in children. It is especially relevant in settings with a high prevalence of HIV or isoniazid resistance. We describe the population pharmacokinetics of ethambutol in children with TB to guide dosing in this population. METHODS: We pooled data from 188 intensively sampled children from the DATiC, DNDi and SHINE studies, who received 15-25 mg/kg ethambutol daily according to WHO guidelines. The median (range) age and weight of the cohort were 1.9 (0.3-12.6) years and 9.6 (3.9-34.5) kg, respectively. Children with HIV (HIV+; n = 103) received ART (lopinavir/ritonavir in 92%). RESULTS: Ethambutol pharmacokinetics were best described by a two-compartment model with first-order elimination and absorption transit compartments. Clearance was estimated to reach 50% of its mature value by 2 months after birth and 99% by 3 years. Typical steady-state apparent clearance in a 10 kg child was 15.9 L/h. In HIV+ children on lopinavir/ritonavir, bioavailability was reduced by 32% [median (IQR) steady-state Cmax = 0.882 (0.669-1.28) versus 1.66 (1.21-2.15) mg/L). In young children, bioavailability correlated with age. At birth, bioavailability was 73.1% of that in children 3.16 years or older. CONCLUSIONS: To obtain exposure within the 2-6 mg/L recommended range for Cmax, the current doses must be doubled (or tripled with HIV+ children on lopinavir/ritonavir) for paediatric patients. This raises concerns regarding the potential for ocular toxicity, which would require evaluation.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , Fármacos Anti-HIV/uso terapêutico , Antituberculosos/farmacocinética , Antituberculosos/uso terapêutico , Criança , Pré-Escolar , Etambutol/farmacocinética , Etambutol/uso terapêutico , Infecções por HIV/tratamento farmacológico , Humanos , Recém-Nascido , Lopinavir/farmacocinética , Lopinavir/uso terapêutico , Ritonavir
4.
Antimicrob Agents Chemother ; 65(7): e0268720, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33875426

RESUMO

Clofazimine is classified as a WHO group B drug for the treatment of rifampin-resistant tuberculosis. QT prolongation, which is associated with fatal cardiac arrhythmias, is caused by several antitubercular drugs, including clofazimine, but there are no data quantifying the effect of clofazimine concentration on QT prolongation. Our objective was to describe the effect of clofazimine exposure on QT prolongation. Fifteen adults drug-susceptible tuberculosis patients received clofazimine monotherapy as 300 mg daily for 3 days, followed by 100 mg daily in one arm of a 2-week, multiarm early bactericidal activity trial in South Africa. Pretreatment Fridericia-corrected QT (QTcF) (105 patients, 524 electrocardiograms [ECGs]) and QTcFs from the clofazimine monotherapy arm matched with clofazimine plasma concentrations (199 ECGs) were interpreted with a nonlinear mixed-effects model. Clofazimine was associated with significant QT prolongation described by a maximum effect (Emax) function. We predicted clofazimine exposures using 100-mg daily doses and 2 weeks of loading with 200 and 300 mg daily, respectively. The expected proportions of patients with QTcF change from baseline above 30 ms (ΔQTcF > 30) were 2.52%, 11.6%, and 23.0% for 100-, 200-, and 300-mg daily doses, respectively. At steady state, the expected proportion with ΔQTcF of >30 ms was 23.7% and with absolute QTcF of >450 ms was 3.42% for all simulated regimens. The use of loading doses of 200 and 300 mg is not predicted to expose patients to an increased risk of QT prolongation, compared with the current standard treatment, and is, therefore, an alternative option for more quickly achieving therapeutic concentrations.


Assuntos
Clofazimina/efeitos adversos , Síndrome do QT Longo , Tuberculose , Adulto , Clofazimina/administração & dosagem , Eletrocardiografia , Frequência Cardíaca , Humanos , Síndrome do QT Longo/induzido quimicamente , África do Sul , Tuberculose/tratamento farmacológico , Adulto Jovem
5.
Artigo em Inglês | MEDLINE | ID: mdl-33229425

RESUMO

Shorter, more potent regimens are needed for tuberculosis. The nitroimidazole pretomanid was recently approved for extensively drug-resistant tuberculosis in combination with bedaquiline and linezolid. Pretomanid may also have benefit as a treatment-shortening agent for drug-sensitive tuberculosis. It is unclear how and whether it can be used together with rifamycins, which are key sterilizing first-line drugs. In this analysis, data were pooled from two studies: the Assessing Pretomanid for Tuberculosis (APT) trial, in which patients with drug-sensitive pulmonary TB received pretomanid, isoniazid, and pyrazinamide plus either rifampin or rifabutin versus standard of care under fed conditions, and the AIDS Clinical Trials Group 5306 (A5306) trial, a phase I study in healthy volunteers receiving pretomanid alone or in combination with rifampin under fasting conditions. In our population pharmacokinetic (PK) model, participants taking rifampin had 44.4 and 59.3% reductions in pretomanid AUC (area under the concentration-time curve) compared to those taking rifabutin or pretomanid alone (due to 80 or 146% faster clearance) in the APT and A5306 trials, respectively. Median maximum concentrations (Cmax) in the rifampin and rifabutin arms were 2.14 and 3.35 mg/liter, while median AUC0-24 values were 30.1 and 59.5 mg·h/liter, respectively. Though pretomanid exposure in APT was significantly reduced with rifampin, AUC0-24 values were similar to those associated with effective treatment in registrational trials, likely because APT participants were fed with dosing, enhancing pretomanid relative bioavailability and exposures. Pretomanid concentrations with rifabutin were high but in range with prior observations. While pretomanid exposures with rifampin are unlikely to impair efficacy, our data suggest that pretomanid should be taken with food if prescribed with rifampin. (This study has been registered at ClinicalTrials.gov under identifier NCT02256696.).


Assuntos
Nitroimidazóis , Rifamicinas , Antituberculosos/uso terapêutico , Humanos , Nitroimidazóis/uso terapêutico , Pirazinamida/uso terapêutico
6.
Antimicrob Agents Chemother ; 65(12): e0138121, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34543098

RESUMO

Linezolid is widely used for drug-resistant tuberculosis (DR-TB) but has a narrow therapeutic index. To inform dose optimization, we aimed to characterize the population pharmacokinetics of linezolid in South African participants with DR-TB and explore the effect of covariates, including HIV coinfection, on drug exposure. Data were obtained from pharmacokinetic substudies in a randomized controlled trial and an observational cohort study, both of which enrolled adults with drug-resistant pulmonary tuberculosis. Participants underwent intensive and sparse plasma sampling. We analyzed linezolid concentration data using nonlinear mixed-effects modeling and performed simulations to estimate attainment of putative efficacy and toxicity targets. A total of 124 participants provided 444 plasma samples; 116 were on the standard daily dose of 600 mg, while 19 had dose reduction to 300 mg due to adverse events. Sixty-one participants were female, 71 were HIV-positive, and their median weight was 56 kg (interquartile range [IQR], 50 to 63). In the final model, typical values for clearance and central volume were 3.57 liters/h and 40.2 liters, respectively. HIV coinfection had no significant effect on linezolid exposure. Simulations showed that 600-mg dosing achieved the efficacy target (area under the concentration-time curve for the free, unbound fraction of the drug [[Formula: see text] at a MIC level of 0.5 mg/liter) with 96% probability but had 56% probability of exceeding safety target ([Formula: see text]. The 300-mg dose did not achieve adequate efficacy exposures. Our model characterized population pharmacokinetics of linezolid in South African patients with DR-TB and supports the 600-mg daily dose with safety monitoring.


Assuntos
Infecções por HIV , Tuberculose Resistente a Múltiplos Medicamentos , Adulto , Antituberculosos/uso terapêutico , População Negra , Feminino , Infecções por HIV/tratamento farmacológico , Humanos , Linezolida , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
7.
Artigo em Inglês | MEDLINE | ID: mdl-31844002

RESUMO

Tuberculosis is an important cause of maternal morbidity, but little is known about the effects of pregnancy on antituberculosis drug concentrations. We developed population pharmacokinetic models to describe drug dispositions of isoniazid, pyrazinamide, and ethambutol in pregnant women with tuberculosis and HIV. HIV-positive pregnant women with tuberculosis receiving standard first-line tuberculosis treatment and participating in Tshepiso, a prospective cohort study in Soweto, South Africa, underwent sparse pharmacokinetic sampling at >36 weeks of gestation and 7 weeks postpartum. The effects of pregnancy on the pharmacokinetics of isoniazid, pyrazinamide, and ethambutol were investigated via population pharmacokinetic modeling. Isoniazid, pyrazinamide, and ethambutol concentrations were available for 29, 18, and 18 women, respectively. Their median weight was 66 kg while pregnant and 64 kg postpartum. No significant differences were observed in drug clearance, volume of distribution, or bioavailability during and after pregnancy. The model-estimated isoniazid, pyrazinamide, and ethambutol area under the concentration-time curve from 0 to 24 h (AUC0-24) medians were, respectively, 6.88, 419, and 16.5 mg · h/liter during pregnancy versus 5.01, 407, and 19.0 mg · h/liter postpartum. The model-estimated maximum concentration (Cmax) medians for isoniazid, pyrazinamide, and ethambutol were, respectively, 1.39, 35.9, and 1.82 mg/liter during pregnancy versus 1.43, 34.5, and 2.11 mg/liter postpartum. A posteriori power calculations determined that our analysis was powered 91.8%, 59.2%, and 90.1% at a P of <0.01 to detect a 40% decrease in the AUCs of isoniazid, pyrazinamide, and ethambutol, respectively. Pregnancy does not appear to cause relevant changes in the exposure to isoniazid, pyrazinamide, and ethambutol. Additional studies of antituberculosis drugs in pregnancy are needed.


Assuntos
Antituberculosos/farmacocinética , Etambutol/farmacocinética , Infecções por HIV/sangue , Isoniazida/farmacocinética , Pirazinamida/farmacocinética , Tuberculose Pulmonar/sangue , Adulto , Antituberculosos/uso terapêutico , Etambutol/uso terapêutico , Feminino , Infecções por HIV/tratamento farmacológico , Infecções por HIV/metabolismo , Humanos , Isoniazida/uso terapêutico , Gravidez , Estudos Prospectivos , Pirazinamida/uso terapêutico , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/metabolismo , Adulto Jovem
8.
J Antimicrob Chemother ; 75(11): 3269-3277, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32747933

RESUMO

BACKGROUND: Clofazimine is in widespread use as a key component of drug-resistant TB regimens, but the recommended dose is not evidence based. Pharmacokinetic data from relevant patient populations are needed to inform dose optimization. OBJECTIVES: To determine clofazimine exposure, evaluate covariate effects on variability, and simulate exposures for different dosing strategies in South African TB patients. PATIENTS AND METHODS: Clinical and pharmacokinetic data were obtained from participants with pulmonary TB enrolled in two studies with intensive and sparse sampling for up to 6 months. Plasma concentrations were measured by LC-MS/MS and interpreted with non-linear mixed-effects modelling. Body size descriptors and other potential covariates were tested on pharmacokinetic parameters. We simulated different dosing regimens to safely shorten time to average daily concentration above a putative target concentration of 0.25 mg/L. RESULTS: We analysed 1570 clofazimine concentrations from 139 participants; 79 (57%) had drug-resistant TB and 54 (39%) were HIV infected. Clofazimine pharmacokinetics were well characterized by a three-compartment model. Clearance was 11.5 L/h and peripheral volume 10 500 L for a typical participant. Lower plasma exposures were observed in women during the first few months of treatment, explained by higher body fat fraction. Model-based simulations estimated that a loading dose of 200 mg daily for 2 weeks would achieve average daily concentrations above a target efficacy concentration 37 days earlier in a typical TB participant. CONCLUSIONS: Clofazimine was widely distributed with a long elimination half-life. Disposition was strongly influenced by body fat content, with potential dosing implications for women with TB.


Assuntos
Clofazimina , Tuberculose Pulmonar , Antituberculosos/uso terapêutico , Cromatografia Líquida , Feminino , Humanos , Espectrometria de Massas em Tandem , Tuberculose Pulmonar/tratamento farmacológico
9.
medRxiv ; 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37066148

RESUMO

Background: Linezolid is being evaluated in novel treatment regimens for tuberculous meningitis (TBM). The pharmacokinetics of linezolid have not been characterized in this population, particularly in cerebrospinal fluid (CSF) where exposures may be affected by changes in protein concentration and rifampicin co-administration. Methods: This was a sub-study of a phase 2 clinical trial of intensified antibiotic therapy for adults with HIV-associated TBM. Participants in the intervention groups received high-dose rifampicin (35 mg/kg) plus linezolid 1200 mg daily for 28 days followed by 600 mg daily until day 56. Plasma was intensively sampled, and lumbar CSF was collected at a single timepoint in a randomly allocated sampling window, within 3 days after enrolment. Sparse plasma and CSF samples were also obtained on day 28. Linezolid concentrations were analyzed using non-linear mixed effects modelling. Results: 30 participants contributed 247 plasma and 28 CSF linezolid observations. Plasma PK was best described by a one-compartment model with first-order absorption and saturable elimination. The typical value of maximal clearance was 7.25 L/h. Duration of rifampicin co-treatment (compared on day 3 versus day 28) did not affect linezolid pharmacokinetics. Partitioning between plasma and CSF correlated with CSF total protein concentration up to 1.2 g/L where the partition coefficient reached a maximal value of 37%. The equilibration half-life between plasma and CSF was estimated at ∻3.5 hours. Conclusion: Linezolid was readily detected in CSF despite co-administration of the potent inducer rifampicin at high doses. These findings support continued clinical evaluation of linezolid plus high-dose rifampicin for the treatment of TBM in adults.

10.
Front Pharmacol ; 13: 1081123, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36686664

RESUMO

Linezolid is an oxazolidinone used to treat multidrug-resistant tuberculosis (MDR-TB), including in the recently-endorsed shorter 6-month treatment regimens. Due to its narrow therapeutic index, linezolid is often either dose-adjusted or discontinued due to intolerance or toxicity during treatment, and the optimal balance between linezolid efficacy and toxicity remains unclear. India carries a significant burden of MDR-TB cases in the world, but limited information on the pharmacokinetics of linezolid and minimum inhibitory concentration (MIC) distribution is available from Indian MDR-TB patients. We enrolled participants from a tertiary care centre in Mumbai, India, treated for MDR-TB and receiving linezolid daily doses of 600 or 300 mg. Pharmacokinetic visits were scheduled between 1 and 15 months after treatment initiation to undergo intensive or sparse blood sampling. Linezolid concentration versus time data were analysed using non-linear mixed-effects modelling, with simulations to evaluate doses for different scenarios. We enrolled 183 participants (121 females), with a median age of 26 years (interquartile range [IQR] 21-35), weight 55.0 kg (IQR 45.6-65.8), and fat-free mass 38.7 kg (IQR 32.7-46.0). Linezolid pharmacokinetics was best described by a one-compartment model with first-order elimination allometrically scaled by fat-free mass and transit compartment absorption. The typical clearance value was 3.81 L/h. Simulations predicted that treatment with 300 mg daily achieves a high probability of target attainment (PTA) when linezolid MIC was ≤0.25 mg/L (61.5% of participant samples tested), while 600 mg daily would be required if MIC were 0.5 mg/L (29% of samples). While linezolid 300 mg daily is predicted to achieve effective targets for the majority of adults with MDR-TB, it failed to achieve the therapeutic target for 21% participants. A dose of 600 mg had a PTA >90% for all susceptible samples, but with a higher likelihood of exceeding toxicity thresholds (31% vs 9.6%). These data suggest potential benefit to individualized dosing taking host and microbial characteristics into account to improve the likelihood of treatment efficacy while minimizing risk of toxicity from linezolid for the treatment of MDR-TB. Further prospective evaluation in different clinical settings is urgently needed to inform safety and efficacy of these lower doses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA