Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Clin Genet ; 102(4): 324-332, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35861243

RESUMO

Proteasome 26S, the eukaryotic proteasome, serves as the machinery for cellular protein degradation. It is composed of the 20S core particle and one or two 19S regulatory particles, composed of a base and a lid. To date, several human diseases have been associated with mutations within the 26S proteasome subunits; only one of them affects a base subunit. We now delineate an autosomal recessive syndrome of failure to thrive, severe developmental delay and intellectual disability, spastic tetraplegia with central hypotonia, chorea, hearing loss, micropenis and undescended testes, as well as mild elevation of liver enzymes. None of the affected individuals achieved verbal communication or ambulation. Ventriculomegaly was evident on MRI. Homozygosity mapping combined with exome sequencing revealed a disease-associated p.I328T PSMC1 variant. Protein modeling demonstrated that the PSMC1 variant is located at the highly conserved putative ATP binding and hydrolysis domain, and is suggested to interrupt a hydrophobic core within the protein. Fruit flies in which we silenced the Drosophila ortholog Rpt2 specifically in the eye exhibited an apparent phenotype that was highly rescued by the human wild-type PSMC1, yet only partly by the mutant PSMC1, proving the functional effect of the p.I328T disease-causing variant.


Assuntos
ATPases Associadas a Diversas Atividades Celulares , Doenças do Sistema Nervoso , Complexo de Endopeptidases do Proteassoma , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Animais , Drosophila , Humanos , Doenças do Sistema Nervoso/genética , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Síndrome
2.
Insect Mol Biol ; 31(2): 216-224, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34919304

RESUMO

Insect epithelial cells contain unique cellular extensions such as bristles, hairs, and scales. In contrast to bristle and hair, which are not divergent in their shape, scale morphology shows high diversity. In our attempt to characterize the role of the insect-specific gene, Spindle-F (spn-F), in mosquito development, we revealed a scale-type specific requirement for the mosquito Aedes aegypti spn-F homologue. Using CRISPR-Cas9, we generated Ae-spn-F mutants and found that Ae-spn-F is an essential gene, but we were able to recover a few adult escapers. These escapers could not fly nor move, and died after 3 to 4 days. We found that in Ae-spn-F mutants, only the tip part of the bristle was affected with bulbous with misoriented ribs. We also show that in Ae-spn-F mutants, only in falcate scales, which are curved with a sharp or narrowly rounded apex, and not in other scale types, the tip region is strongly affected. Our analysis also revealed that in contrast to Drosophila spn-F, which show strong defects in both the actin and microtubule (MT) network in the bristle, the Ae-spn-F gene is required only for MT organization in scales and bristles. In summary, our results reveal that Ae-spn-F is required for shaping tapered epithelial cellular extension structures, namely, the bristle and falcate scales by affecting MT organization.


Assuntos
Aedes , Proteínas de Drosophila , Aedes/genética , Animais , Drosophila/genética , Proteínas de Drosophila/química , Genes de Insetos , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos , Mosquitos Vetores
3.
J Med Genet ; 58(4): 254-263, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32527956

RESUMO

BACKGROUND: Mutation in S-phase cyclin A-associated protein rin the endoplasmic reticulum (SCAPER) have been found across ethnicities and have been shown to cause variable penetrance of an array of pathological traits, including intellectual disability, retinitis pigmentosa and ciliopathies. METHODS: Human clinical phenotyping, surgical testicular sperm extraction and testicular tissue staining. Generation and analysis of short spindle 3 (ssp3) (SCAPER orthologue) Drosophila CAS9-knockout lines. In vitro microtubule (MT) binding assayed by total internal reflection fluorescence microscopy. RESULTS: We show that patients homozygous for a SCAPER mutation lack SCAPER expression in spermatogonia (SPG) and are azoospermic due to early defects in spermatogenesis, leading to the complete absence of meiotic cells. Interestingly, Drosophila null mutants for the ubiquitously expressed ssp3 gene are viable and female fertile but male sterile. We further show that male sterility in ssp3 null mutants is due to failure in both chromosome segregation and cytokinesis. In cells undergoing male meiosis, the MTs emanating from the centrosomes do not appear to interact properly with the chromosomes, which remain dispersed within dividing spermatocytes (SPCs). In addition, mutant SPCs are unable to assemble a normal central spindle and undergo cytokinesis. Consistent with these results, an in vitro assay demonstrated that both SCAPER and Ssp3 directly bind MTs. CONCLUSIONS: Our results show that SCAPER null mutations block the entry into meiosis of SPG, causing azoospermia. Null mutations in ssp3 specifically disrupt MT dynamics during male meiosis, leading to sterility. Moreover, both SCAPER and Ssp3 bind MTs in vitro. These results raise the intriguing possibility of a common feature between human and Drosophila meiosis.


Assuntos
Proteínas de Transporte/genética , Infertilidade Masculina/genética , Microtúbulos/genética , Serina Endopeptidases/genética , Animais , Segregação de Cromossomos/genética , Modelos Animais de Doenças , Drosophila melanogaster/genética , Predisposição Genética para Doença , Humanos , Infertilidade Masculina/patologia , Masculino , Meiose/genética , Mutação/genética , Espermatócitos/crescimento & desenvolvimento , Espermatócitos/patologia , Fuso Acromático/genética , Fuso Acromático/patologia , Testículo/crescimento & desenvolvimento , Testículo/patologia
4.
Int J Mol Sci ; 22(8)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924532

RESUMO

The generation of F-actin bundles is controlled by the action of actin-binding proteins. In Drosophila bristle development, two major actin-bundling proteins-Forked and Fascin-were identified, but still the molecular mechanism by which these actin-bundling proteins and other proteins generate bristle actin bundles is unknown. In this study, we developed a technique that allows recapitulation of bristle actin module organization using the Drosophila ovary by a combination of confocal microscopy, super-resolution structured illumination microscopy, and correlative light and electron microscope analysis. Since Forked generated a distinct ectopic network of actin bundles in the oocyte, the additive effect of two other actin-associated proteins, namely, Fascin and Javelin (Jv), was studied. We found that co-expression of Fascin and Forked demonstrated that the number of actin filaments within the actin bundles dramatically increased, and in their geometric organization, they resembled bristle-like actin bundles. On the other hand, co-expression of Jv with Forked increased the length and density of the actin bundles. When all three proteins co-expressed, the actin bundles were longer and denser, and contained a high number of actin filaments in the bundle. Thus, our results demonstrate that the Drosophila oocyte could serve as a test tube for actin bundle analysis.


Assuntos
Actinas/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Oócitos/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Drosophila melanogaster/citologia , Células Germinativas/metabolismo , Oócitos/citologia , Relação Estrutura-Atividade
5.
J Med Genet ; 56(3): 139-148, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30464055

RESUMO

BACKGROUND: Consanguineous kindred presented with an autosomal recessive syndrome of intrauterine growth retardation, marked developmental delay, spastic quadriplegia with profound contractures, pseudobulbar palsy with recurrent aspirations, epilepsy, dysmorphism, neurosensory deafness and optic nerve atrophy with no eye fixation. Affected individuals died by the age of 4. Brain MRI demonstrated microcephaly, semilobar holoprosencephaly and agenesis of corpus callosum. We aimed at elucidating the molecular basis of this disease. METHODS: Genome-wide linkage analysis combined with whole exome sequencing were performed to identify disease-causing variants. Functional consequences were investigated in fruit flies null mutant for the Drosophila SEC31A orthologue. SEC31A knockout SH-SY5Y and HEK293T cell-lines were generated using CRISPR/Cas9 and studied through qRT-PCR, immunoblotting and viability assays. RESULTS: Through genetic studies, we identified a disease-associated homozygous nonsense mutation in SEC31A. We demonstrate that SEC31A is ubiquitously expressed, and that the mutation triggers nonsense-mediated decay of its transcript, comprising a practical null mutation. Similar to the human disease phenotype, knockdown SEC31A flies had defective brains and early lethality. Moreover, in line with SEC31A encoding one of the two coating layers comprising the Coat protein complex II (COP-II) complex, trafficking newly synthesised proteins from the endoplasmic reticulum (ER) to the Golgi, CRISPR/Cas9-mediated SEC31A null mutant cells demonstrated reduced viability through upregulation of ER-stress pathways. CONCLUSION: We demonstrate through human and Drosophila genetic and in vitro molecular studies, that a severe neurological syndrome is caused by a null mutation in SEC31A, reducing cell viability through enhanced ER-stress response, in line with SEC31A's role in the COP-II complex.


Assuntos
Retículo Endoplasmático/metabolismo , Homeostase , Mutação , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/metabolismo , Proteínas de Transporte Vesicular/genética , Animais , Consanguinidade , Modelos Animais de Doenças , Drosophila , Eletromiografia , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Doenças do Sistema Nervoso/diagnóstico , Condução Nervosa , Linhagem , Fenótipo , Síndrome , Tomografia Computadorizada por Raios X
6.
Development ; 143(22): 4203-4213, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27707795

RESUMO

Intrinsic cell microtubule (MT) polarity, together with molecular motors and adaptor proteins, determines mitochondrial polarized targeting and MT-dependent transport. In polarized cells, such as neurons, mitochondrial mobility and transport require the regulation of kinesin and dynein by two adaptor proteins, Milton and Miro. Recently, we found that dynein heavy chain 64C (Dhc64C) is the primary motor protein for both anterograde and retrograde transport of mitochondria in the Drosophila bristle. In this study, we show that a molecular lesion in the Dhc64C allele that reduced bristle mitochondrial velocity generated a variant that acts as a 'slow' dynein in an MT-gliding assay, indicating that dynein directly regulates mitochondrial transport. We also showed that in milton-RNAi flies, mitochondrial flux into the bristle shaft, but not velocity, was significantly reduced. Surprisingly, mitochondria retrograde flux, but not net velocity, was significantly decreased in miro-RNAi flies. We thus reveal a new mode of mitochondrial sorting in polarized cell growth, whereby bi-directional mitochondrial transport undertaken exclusively by dynein is regulated by Milton in the anterograde direction and by a Miro-dependent switch to the retrograde direction.


Assuntos
Transporte Axonal/genética , Polaridade Celular/fisiologia , Proteínas de Drosophila/fisiologia , Dineínas/fisiologia , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Proteínas rho de Ligação ao GTP/fisiologia , Animais , Animais Geneticamente Modificados , Transporte Biológico , Cílios/genética , Cílios/metabolismo , Cílios/ultraestrutura , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Dineínas/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas do Tecido Nervoso/genética , Transporte Proteico/genética , Pupa , Proteínas rho de Ligação ao GTP/genética
7.
Cell Mol Life Sci ; 75(2): 163-176, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28702760

RESUMO

Mitochondria are cellular organelles of crucial importance, playing roles in cellular life and death. In certain cell types, such as neurons, mitochondria must travel long distances so as to meet metabolic demands of the cell. Mitochondrial movement is essentially microtubule (MT) based and is executed by two main motor proteins, Dynein and Kinesin. The organization of the cellular MT network and the identity of motors dictate mitochondrial transport. Tight coupling between MTs, motors, and the mitochondria is needed for the organelle precise localization. Two adaptor proteins are involved directly in mitochondria-motor coupling, namely Milton known also as TRAK, which is the motor adaptor, and Miro, which is the mitochondrial protein. Here, we discuss the active mitochondria transport process, as well as motor-mitochondria coupling in the context of MT organization in different cell types. We focus on mitochondrial trafficking in different cell types, specifically neurons, migrating cells, and polarized epithelial cells.


Assuntos
Microtúbulos/metabolismo , Microtúbulos/fisiologia , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Transporte Proteico/fisiologia , Animais , Humanos , Proteínas Mitocondriais/metabolismo , Neurônios/metabolismo , Neurônios/fisiologia
8.
PLoS Genet ; 12(3): e1005919, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27008544

RESUMO

Primary microcephaly is a congenital neurodevelopmental disorder of reduced head circumference and brain volume, with fewer neurons in the cortex of the developing brain due to premature transition between symmetrical and asymmetrical cellular division of the neuronal stem cell layer during neurogenesis. We now show through linkage analysis and whole exome sequencing, that a dominant mutation in ALFY, encoding an autophagy scaffold protein, causes human primary microcephaly. We demonstrate the dominant effect of the mutation in drosophila: transgenic flies harboring the human mutant allele display small brain volume, recapitulating the disease phenotype. Moreover, eye-specific expression of human mutant ALFY causes rough eye phenotype. In molecular terms, we demonstrate that normally ALFY attenuates the canonical Wnt signaling pathway via autophagy-dependent removal specifically of aggregates of DVL3 and not of Dvl1 or Dvl2. Thus, autophagic attenuation of Wnt signaling through removal of Dvl3 aggregates by ALFY acts in determining human brain size.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Membrana/genética , Microcefalia/genética , Fosfoproteínas/genética , Fatores de Transcrição/genética , Animais , Animais Geneticamente Modificados , Proteínas Relacionadas à Autofagia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas Desgrenhadas , Drosophila , Ligação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Microcefalia/patologia , Mutação , Tamanho do Órgão/genética , Via de Sinalização Wnt/genética
9.
Development ; 142(20): 3612, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26487782

RESUMO

There was an error published in Development 142, 2338-2351. Otani et al. reported the genetic interactions between ikkε and spn-F, using the allele ikkε66. This allele was referred to in the Materials and Methods on p. 2349, Fig. 3 on p. 2343 and Table S1. However, they subsequently found that the allele used in the experiments was ikkε1 (also known as ikkε36). This was as a result of misannotation in their laboratory stock list. Both alleles are strong loss-of-function alleles with a missense mutation in the kinase domain and show similar phenotypes (Oshima et al., 2006; Shapiro and Anderson, 2006). Therefore, this error does not affect the conclusions of the paper. The authors apologise to readers for this mistake.

10.
Development ; 142(13): 2338-51, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26092846

RESUMO

Stable localization of the signaling complex is essential for the robust morphogenesis of polarized cells. Cell elongation involves molecular signaling centers that coordinately regulate intracellular transport and cytoskeletal structures. In Drosophila bristle elongation, the protein kinase IKKε is activated at the distal tip of the growing bristle and regulates the shuttling movement of recycling endosomes and cytoskeletal organization. However, how the distal tip localization of IKKε is established and maintained during bristle elongation is unknown. Here, we demonstrate that IKKε distal tip localization is regulated by Spindle-F (Spn-F), which is stably retained at the distal tip and functions as an adaptor linking IKKε to cytoplasmic dynein. We found that Javelin-like (Jvl) is a key regulator of Spn-F retention. In jvl mutant bristles, IKKε and Spn-F initially localize to the distal tip but fail to be retained there. In S2 cells, particles that stain positively for Jvl or Spn-F move in a microtubule-dependent manner, whereas Jvl and Spn-F double-positive particles are immobile, indicating that Jvl and Spn-F are transported separately and, upon forming a complex, immobilize each other. These results suggest that polarized transport and selective retention regulate the distal tip localization of the Spn-F-IKKε complex during bristle cell elongation.


Assuntos
Estruturas Animais/citologia , Estruturas Animais/crescimento & desenvolvimento , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Quinase I-kappa B/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Estruturas Animais/metabolismo , Estruturas Animais/ultraestrutura , Animais , Linhagem Celular , Polaridade Celular , Citoplasma/metabolismo , Drosophila melanogaster/metabolismo , Drosophila melanogaster/ultraestrutura , Dineínas/metabolismo , Epistasia Genética , Microtúbulos/metabolismo , Modelos Biológicos , Ligação Proteica , Transporte Proteico
11.
Development ; 139(11): 1987-96, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22513371

RESUMO

Within interphase cells, microtubules (MTs) are organized in a cell-specific manner to support cell shape and function. Here, we report that coordination between stable and dynamic MTs determines and maintains the highly elongated bristle cell shape. By following MT-decorating hooks and by tracking EB1 we identified two MT populations within bristles: a stable MT population polarized with their minus ends distal to the cell body, and a dynamic MT population that exhibits mixed polarity. Manipulating MT dynamics by Klp10A downregulation demonstrates that MTs can initiate new shaft extensions and thus possess the ability to determine growth direction. Actin filament bundling subsequently supports the newly formed shaft extensions. Analysis of ik2 mutant bristles, established by elongation defects in the Drosophila ikkε homolog, led to the observation that stable and dynamic MT orientation and polarized organization are important for proper bristle elongation. Thus, we demonstrate for the first time that coordination between stable and dynamic MT sets that are axially organized yet differently polarized drives cell elongation.


Assuntos
Forma Celular/fisiologia , Drosophila melanogaster/citologia , Interfase/fisiologia , Microtúbulos/fisiologia , Sensilas/citologia , Análise de Variância , Animais , Polaridade Celular/fisiologia , Proteínas de Drosophila/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Quinase I-kappa B/metabolismo , Cinesinas/metabolismo , Microscopia Confocal , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Faloidina , Sensilas/fisiologia , Imagem com Lapso de Tempo
12.
Development ; 138(21): 4661-71, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21989913

RESUMO

Asymmetrical localization of mRNA transcripts during Drosophila oogenesis determines the anteroposterior and dorsoventral axes of the Drosophila embryo. Correct localization of these mRNAs requires both microtubule (MT) and actin networks. In this study, we have identified a novel gene, CG43162, that regulates mRNA localization during oogenesis and also affects bristle development. We also showed that the Drosophila gene javelin-like, which was identified based on its bristle phenotype, is an allele of the CG43162 gene. We demonstrated that female mutants for jvl produce ventralized eggs owing to the defects in the localization and translation of gurken mRNA during mid-oogenesis. Mutations in jvl also affect oskar and bicoid mRNA localization. Analysis of cytoskeleton organization in the mutants reveal defects in both MT and actin networks. We showed that Jvl protein colocalizes with MT network in Schneider cells, in mammalian cells and in the Drosophila oocyte. Both in the oocyte and in the bristle cells, the protein localizes to a region where MT minus-ends are enriched. Jvl physically interacts with SpnF and is required for its localization. We found that overexpression of Jvl in the germline affects MT-dependent processes: oocyte growth and oocyte nucleus anchoring. Thus, our results show that we have identified a novel MT-associated protein that affects mRNA localization in the oocyte by regulating MT organization.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Oogênese/fisiologia , RNA Mensageiro/metabolismo , Actinas/metabolismo , Animais , Animais Geneticamente Modificados , Núcleo Celular/metabolismo , Polaridade Celular , Células Cultivadas , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Proteínas de Drosophila/genética , Drosophila melanogaster/anatomia & histologia , Feminino , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/metabolismo , Oócitos/citologia , Oócitos/fisiologia , Transativadores/genética , Transativadores/metabolismo , Fator de Crescimento Transformador alfa/genética , Fator de Crescimento Transformador alfa/metabolismo , Técnicas do Sistema de Duplo-Híbrido
13.
Dev Dyn ; 242(6): 731-7, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23444317

RESUMO

BACKGROUND: The conserved cytokine-induced apoptosis inhibitor-1 (CIAPIN1) gene has been implicated in several processes, such as apoptosis, cell division, angiogenesis and Fe/S protein biogenesis. In this study, we identified the Drosophila CIAPIN1 homologue (D-CIAPIN1) and studied its role in ovarian development. RESULTS: We found that D-CIAPIN1 is conserved as it can complement the nonviability of the yeast CIAPIN1-deletion strain. Several D-CIAPIN1 alleles were identified, including one allele in which that codon encoding the highly conserved twin cysteine CX2 C motif is mutated, demonstrating for the first time the importance of this motif to protein function. We demonstrated D-CIAPIN1 is an essential gene required for ovarian development. We found that D-CIAPIN1 female mutants are sterile, containing rudimentary ovaries. We noted a decrease in follicle cell numbers in D-CIAPIN1 mutant egg chambers. We further demonstrated that the decrease in follicle cell numbers in D-CIAPIN1 mutants is due to a reduced mitotic index and enhanced cell death. CONCLUSIONS: Our study reveals that D-CIAPIN1 is essential for egg chamber development and is required for follicle cell proliferation and survival.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Folículo Ovariano/embriologia , Alelos , Animais , Animais Geneticamente Modificados , Morte Celular , Proliferação de Células , Sobrevivência Celular , Drosophila/genética , Proteínas de Drosophila/genética , Feminino , Deleção de Genes , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mitose , Mutação , Transgenes
14.
G3 (Bethesda) ; 14(2)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-37943814

RESUMO

Bird plumage coloration is a complex and multifactorial process that involves both genetic and environmental factors. Diverse pigment groups contribute to plumage variation in different birds. In parrots, the predominant green color results from the combination of 2 different primary colors: yellow and blue. Psittacofulvin, a pigment uniquely found in parrots, is responsible for the yellow coloration, while blue is suggested to be the result of light scattering by feather nanostructures and melanin granules. So far, genetic control of melanin-mediated blue coloration has been elusive. In this study, we demonstrated that feather from the yellow mutant rose-ringed parakeet displays loss of melanosome granules in spongy layer of feather barb. Using whole genome sequencing, we found that mutation in SLC45A2, an important solute carrier protein in melanin synthetic pathway, is responsible for the sex-linked yellow phenotype in rose-ringed parakeet. Intriguingly, one of the mutations, P53L found in yellow Psittacula krameri is already reported as P58A/S in the human albinism database, known to be associated with human OCA4. We further showed that mutations in SLC45A2 gene affect melanin production also in other members of Psittaculidae family such as alexandrine and plum-headed parakeets. Additionally, we demonstrate that the mutations associated with the sex-linked yellow phenotype, localized within the transmembrane domains of the SLC45A2 protein, affect the protein localization pattern. This is the first evidence of plumage color variation involving SLC45A2 in parrots and confirmation of associated mutations in the transmembrane domains of the protein that affects its localization.


Assuntos
Melaninas , Papagaios , Humanos , Animais , Melaninas/genética , Plumas/química , Plumas/metabolismo , Mutação , Papagaios/metabolismo , Fenótipo , Pigmentação/genética , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Proteínas de Membrana Transportadoras/genética
15.
Poult Sci ; 103(8): 103890, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38870613

RESUMO

Generation of transgenic birds can be achieved by temporal suppression of endogenous spermatogenesis in males prior to primordial germ cell implantation. One of many established methods to induce male sterility is the intraperitoneal injection of busulfan, an alkylating agent. Nevertheless, the use of busulfan injections, which may also affect hematopoietic stem cells, carries the risk of potential lethality in animals. Given their safety and non-toxic nature, it has been demonstrated that intratesticular busulfan injections in mammals are less effective than intraperitoneal injections. This study aimed to compare, for the first time, the sterility and toxicity effects of intraperitoneal vs. intratesticular busulfan injections in quail and chickens. Our experimental design involved a previously established single intraperitoneal busulfan injection of 40 mg/kg of body weight (BW). In quail, busulfan was then administered intratesticularly at 3 different concentrations (6, 12, and 20 mg/kg BW), while in chickens, the working concentration was 20 mg/kg BW. We found that a single intraperitoneal busulfan injection of 40 mg/kg of BW resulted in 100% mortality in the treated roosters. In quails, however, this concentration only caused a temporary suppression of fertility for a 15-d period. Moreover, we found that a higher dose of intratesticular injection of busulfan is required to suppress spermatogenesis in quail (20 mg/kg BW) compared to mammals (4 mg/kg BW). Following these findings, we further confirmed that intratesticular injection of 20 mg/kg BW busulfan into roosters did not affect their overall viability. However, it induced a temporary state of male sterility, consistent with the effects observed with intraperitoneal injections. Hence, our data demonstrate that quail and chicken respond differently to busulfan administration. Furthermore, the present study provides evidence that direct injection into the rooster testes causes less physiological stress than intraperitoneal injection.

16.
J Exp Biol ; 216(Pt 11): 2122-8, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23470660

RESUMO

Crustacean male sexual differentiation is governed by the androgenic gland (AG) and specifically by the secreted insulin-like AG hormone (IAG), thus far identified in several decapod species including the Australian red claw crayfish Cherax quadricarinatus (termed Cq-IAG). While a few insulin-like AG genes have been identified in crustaceans, other AG-specific genes have not been documented until now. In the present study, we describe the recent identification of a non-IAG AG-specific transcript obtained from the C. quadricarinatus AG cDNA library. This transcript, termed C. quadricarinatus membrane-anchored AG-specific factor (Cq-MAG), was fully sequenced and found to encode a putative product of 189 amino acids including a signal anchoring peptide. Expression of a recombinant GFP fusion protein lacking the signal anchor encoding sequence dramatically affected recombinant protein localization pattern. While the expression of the deleterious fusion protein was observed throughout most of the cell, the native GFP::Cq-MAG fusion protein was observed mainly surrounding the periphery of the nucleus, demonstrating an endoplasmic reticulum (ER)-like localization pattern. Moreover, co-expression of the wild-type Cq-MAG (fused to GFP) and the Cq-IAG hormone revealed that these peptides indeed co-localize. This study is the first to report a protein specifically associated with the insulin-like AG hormone in addition to the finding of another AG-specific transcript in crustaceans. Previous knowledge suggests that insulin/insulin-like factor secretion involves tissue-specific transcripts and membrane-anchored proteins. In this regard, Cq-MAG's tissue specificity, anchoring properties and intracellular co-localization with Cq-IAG suggest that it may play a role in the processing and secretion of this insulin-like AG hormone.


Assuntos
Androgênios/metabolismo , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Astacoidea/crescimento & desenvolvimento , Astacoidea/genética , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/química , Astacoidea/química , Astacoidea/metabolismo , Sequência de Bases , Insulina/metabolismo , Masculino , Dados de Sequência Molecular , Diferenciação Sexual , Transcrição Gênica
17.
Sci Adv ; 9(41): eadi3401, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37824622

RESUMO

Foraminifera are unicellular organisms that established the most diverse algal symbioses in the marine realm. Endosymbiosis repeatedly evolved in several lineages, while some engaged in the sequestration of chloroplasts, known as kleptoplasty. So far, kleptoplasty has been documented exclusively in the rotaliid clade. Here, we report the discovery of kleptoplasty in the species Hauerina diversa that belongs to the miliolid clade. The existence of kleptoplasty in the two main clades suggests that it is more widespread than previously documented. We observed chloroplasts in clustered structures within the foraminiferal cytoplasm and confirmed their functionality. Phylogenetic analysis of 18S ribosomal RNA gene sequences showed that H. diversa branches next to symbiont-bearing Alveolinidae. This finding represents evidence of of a relationship between kleptoplastic and symbiotic foraminifera.. Analysis of ribosomal genes and metagenomics revealed that alveolinid symbionts and kleptoplasts belong to the same clade, which suggests a common ancestry.


Assuntos
Foraminíferos , Simbiose , Filogenia , Simbiose/genética , Foraminíferos/genética , Cloroplastos/genética
18.
PLoS Genet ; 4(2): e31, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18266476

RESUMO

Heterozygous mutations in the tumor suppressor BRCA2 confer a high risk of breast and other cancers in humans. BRCA2 maintains genome stability in part through the regulation of Rad51-dependent homologous recombination. Much about its precise function in the DNA damage responses is, however, not yet known. We have made null mutations in the Drosophila homolog of BRCA2 and measured the levels of homologous recombination, non-homologous end-joining, and single-strand annealing in the pre-meiotic germline of Drosophila males. We show that repair by homologous recombination is dramatically decreased in Drosophila brca2 mutants. Instead, large flanking deletions are formed, and repair by the non-conservative single-strand annealing pathway predominates. We further show that during meiosis, Drosophila Brca2 has a dual role in the repair of meiotic double-stranded breaks and the efficient activation of the meiotic recombination checkpoint. The eggshell patterning defects that result from activation of the meiotic recombination checkpoint in other meiotic DNA repair mutants can be strongly suppressed by mutations in brca2. In addition, Brca2 co-immunoprecipitates with the checkpoint protein Rad9, suggesting a direct role for Brca2 in the transduction of the meiotic recombination checkpoint signal.


Assuntos
Reparo do DNA/genética , Drosophila/genética , Drosophila/metabolismo , Genes BRCA2 , Genes de Insetos , Animais , Animais Geneticamente Modificados , Sequência de Bases , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quebras de DNA de Cadeia Dupla , Drosophila/citologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Feminino , Instabilidade Genômica , Humanos , Masculino , Meiose/genética , Mitose/genética , Modelos Genéticos , Mutação , Recombinação Genética
19.
Front Cell Dev Biol ; 9: 787976, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35111755

RESUMO

Diversity in cytoskeleton organization and function may be achieved through alternative tubulin isotypes and by a variety of post-translational modifications. The Drosophila genome contains five different ß-tubulin paralogs, which may play an isotype tissue-specific function in vivo. One of these genes, the ß-tubulin60D gene, which is expressed in a tissue-specific manner, was found to be essential for fly viability and fertility. To further understand the role of the ß-tubulin60D gene, we generated new ß-tubulin60D null alleles (ß-tubulin60D M ) using the CRISPR/Cas9 system and found that the homozygous flies were viable and fertile. Moreover, using a combination of genetic complementation tests, rescue experiments, and cell biology analyses, we identified Pin 1 , an unknown dominant mutant with bristle developmental defects, as a dominant-negative allele of ß-tubulin60D. We also found a missense mutation in the Pin1 mutant that results in an amino acid replacement from the highly conserved glutamate at position 75 to lysine (E75K). Analyzing the ß-tubulin structure suggests that this E75K alteration destabilizes the alpha-helix structure and may also alter the GTP-Mg2+ complex binding capabilities. Our results revisited the credence that ß-tubulin60D is required for fly viability and revealed for the first time in Drosophila, a novel dominant-negative function of missense ß-tubulin60D mutation in bristle morphogenesis.

20.
Apoptosis ; 15(12): 1425-34, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20838898

RESUMO

In Drosophila, the checkpoint protein-2 kinase (DmChk2) and its downstream effector protein, Dmp53, are required for DNA damage-mediated cell cycle arrest, DNA repair and apoptosis. In this study we focus on understanding the function of these two apoptosis inducing factors during ovarian development. We found that expression of Dmp53, but not DmChk2, led to loss of ovarian stem cells. We demonstrate that expression of DmChk2, but not Dmp53, induced mid-oogenesis cell death. DmChk2 induced cell death was not suppressed by Dmp53 mutant, revealing for the first time that in Drosophila, over-expression of DmChk2 can induce cell death which is independent of Dmp53. We found that over-expression of caspase inhibitors such as DIAP1, p35 and p49 did not suppress DmChk2- and Dmp53-induced cell death. Thus, our study reveals stage-specific effects of Dmp53 and DmChk2 in oogenesis. Moreover, our results demonstrate that although DmChk2 and Dmp53 affect different stages of ovarian development, loss of ovarian stem cells by p53 expression and mid-oogenesis cell death induced by DmChk2 do not require caspase activity.


Assuntos
Apoptose , Autofagia , Drosophila melanogaster/fisiologia , Genes de Insetos , Oogênese , Proteínas Serina-Treonina Quinases , Proteína Supressora de Tumor p53 , Animais , Animais Geneticamente Modificados , Apoptose/genética , Autofagia/genética , Inibidores de Caspase , Caspases/metabolismo , Quinase do Ponto de Checagem 2 , Clonagem Molecular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Feminino , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Oogênese/genética , Folículo Ovariano/fisiologia , Folículo Ovariano/ultraestrutura , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA