Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Food Sci Technol ; 59(3): 1053-1062, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35153325

RESUMO

Palm oil is one of the most produced and traded vegetable oils in the world recently. The quality of palm oil is very important to be examined and one of the quality indices is free fatty acid (FFA) content. Thus, in this study, an electrochemical technique for the determination of FFA as alternative to conventional method (titration method) has been explored. The electrochemical method was developed based on electrochemically reduced graphene oxide (rGO) deposited onto screen printed carbon electrode (SPCE) via drop-casting technique. The modified electrode was characterized by physico-chemical and electrochemical methods, respectively. The voltammetric behaviour of 2-methyl-1,4-naphthaquinone (VK3) in the presence of palmitic acid at the modified electrode was investigated in an acetonitrile/water (3:1) mixture containing 2.5 M lithium perchlorate (LiClO4). The electrochemical detection of palmitic acid was based on the voltammetric reduction of VK3 to form corresponding hydroquinone which is proportional to the concentration of palmitic acid. Under optimum condition, the developed method showed a good linear relationship in the concentration ranging from 0.192 mM to 0.833 mM with the detection limit of 0.079 mM. The developed sensor illustrates high sensitivity and rapid detection towards determination of FFA content in palm oil.

2.
Mikrochim Acta ; 188(1): 20, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33404779

RESUMO

An early detection of Mycobacterium tuberculosis is very important to reduce the number of fatal cases and allow for fast recovery. However, the interpretation of the result from smear microscopy requires skilled personnel due to the propensity of the method to produce false-negative results. In this work, a portable, rapid, and simple sandwich-type immunosensor reader has been developed that is able to detect the presence of M. tuberculosis in sputum samples. By using sandwich-type immunosensor, an anti-CFP10-ESAT6 antibody was immobilized onto the graphene/polyaniline (GP/PANI)-modified gold screen-printed electrode. After incubation with the target CFP10-ESAT6 antigen, the iron/gold magnetic nanoparticles (Fe3O4/Au MNPs) conjugated with anti-CFP10-ESAT6 antibody were used to complete the sandwich format. Differential pulse voltammetry (DPV) technique was used to detect the CFP10-ESAT6 antigen at the potential range of 0.0-1.0 V. The detection time is less than 2 h. Under optimal condition, CFP10-ESAT6 antigen was detected in a linear range from 10 to 500 ng mL-1 with a limit of detection at 1.5 ng mL-1. The method developed from this process was then integrated into a portable reader. The performance of the sensor was investigated and compared with the standard methods (culture and smear microscopy). It provides a good correlation (100% sensitivity and 91.7% specificity) with both methods of detection for M. tuberculosis in sputum samples henceforth, demonstrating the potential of the device as a more practical screening tool.Graphical abstract.


Assuntos
Proteínas de Bactérias/análise , Nanopartículas de Magnetita/química , Mycobacterium tuberculosis/química , Proteínas Recombinantes de Fusão/análise , Escarro/química , Tuberculose/diagnóstico por imagem , Técnicas Eletroquímicas/métodos , Ouro/química , Humanos , Imunoensaio/métodos , Limite de Detecção , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
3.
Opt Express ; 28(7): 9738-9752, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32225575

RESUMO

In this study, the incorporation between gold modified-tyrosinase (Tyr) enzyme based graphene oxide (GO) thin film with surface plasmon resonance (SPR) technique has been developed for the detection of phenol. SPR signal for the thin film contacted with phenol solution was monitored using SPR technique. From the SPR curve, sensitivity, full width at half maximum (FWHM), detection accuracy (DA) and signal-to-noise ratio (SNR) have been analyzed. The sensor produces a linear response for phenol up to 100 µM with sensitivity of 0.00193° µM-1. Next, it can be observed that deionized water has the lowest FWHM, with a value of 1.87° and also the highest value of DA. Besides, the SNR of the SPR signal was proportional to the phenol concentrations. Furthermore, the surface morphology of the modified thin film after exposed with phenol solution observed using atomic force microscopy showed a lot of sharp peaks compared to the image before in contact with phenol proved the interaction between the thin film and phenol.


Assuntos
Ouro/química , Grafite/química , Monofenol Mono-Oxigenase/metabolismo , Fenol/análise , Ressonância de Plasmônio de Superfície/métodos , Agaricales/enzimologia , Microscopia de Força Atômica , Processamento de Sinais Assistido por Computador , Razão Sinal-Ruído , Soluções
4.
Anal Biochem ; 610: 113876, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32750357

RESUMO

The identification of rice bacterial leaf blight disease requires a simple, rapid, highly sensitive, and quantitative approach that can be applied as an early detection monitoring tool in rice health. This paper highlights the development of a turn-off fluorescence-based immunoassay for the early detection of Xanthomonas oryzae pv. oryzae (Xoo), a gram-negative bacterium that causes rice bacterial leaf blight disease. Antibodies against Xoo bacterial cells were produced as specific bio-recognition molecules and the conjugation of these antibodies with graphene quantum dots and gold nanoparticles was performed and characterized, respectively. The combination of both these bio-probes as a fluorescent donor and metal quencher led to changes in the fluorescence signal. The immunoreaction between AntiXoo-GQDs, Xoo cells, and AntiXoo-AuNPs in the immuno-aggregation complex led to the energy transfer in the turn-off fluorescence-based quenching system. The change in fluorescence intensity was proportional to the logarithm of Xoo cells in the range of 100-105 CFU mL-1. The limit of detection was achieved at 22 CFU mL-1 and the specificity test against other plant disease pathogens showed high specificity towards Xoo. The detection of Xoo in real plant samples was also performed in this study and demonstrated satisfactory results.


Assuntos
Imunoensaio/métodos , Oryza/microbiologia , Xanthomonas/isolamento & purificação , Anticorpos Antibacterianos/química , Anticorpos Antibacterianos/imunologia , Corantes Fluorescentes/química , Ouro/química , Grafite/química , Nanopartículas Metálicas/química , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Pontos Quânticos/química , Xanthomonas/imunologia
5.
Molecules ; 25(15)2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32722334

RESUMO

Death from tuberculosis has resulted in an increased need for early detection to prevent a tuberculosis (TB) epidemic, especially in closed and crowded populations. Herein, a sensitive electrochemical DNA biosensor based on functionalized iron oxide with mercaptopropionic acid (MPA-Fe3O4) nanoparticle and nanocellulose crystalline functionalized cetyl trimethyl ammonium bromide (NCC/CTAB) has been fabricated for the detection of Mycobacterium tuberculosis (MTB). In this study, a simple drop cast method was applied to deposit solution of MPA-Fe3O4/NCC/CTAB onto the surface of the screen-printed carbon electrode (SPCE). Then, a specific sequence of MTB DNA probe was immobilized onto a modified SPCE surface by using the 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS) coupling mechanism. For better signal amplification and electrochemical response, ruthenium bipyridyl Ru(bpy)32+ was assigned as labels of hybridization followed by the characteristic test using differential pulse voltammetry (DPV). The results of this biosensor enable the detection of target DNA until a concentration as low as 7.96 × 10-13 M with a wide detection range from 1.0 × 10-6 to 1.0 × 10-12 M. In addition, the developed biosensor has shown a differentiation between positive and negative MTB samples in real sampel analysis.


Assuntos
Carbono/química , DNA Bacteriano/análise , Compostos Férricos/química , Mycobacterium tuberculosis/isolamento & purificação , Ácido 3-Mercaptopropiônico/química , Técnicas Biossensoriais , Cetrimônio/química , Técnicas Eletroquímicas , Eletrodos , Mycobacterium tuberculosis/genética
6.
Opt Express ; 27(22): 32294-32307, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31684445

RESUMO

In this study, the incorporation of surface plasmon resonance (SPR) spectroscopy with novel chitosan-graphene oxide/cadmium sulphide quantum dots (CdS QDs) active layer for cobalt ion (Co2+) detection has been developed. The interaction of different Co2+ concentrations with the novel modified active layer was monitored using the SPR technique. From the SPR results, detection range, sensitivity, full width at half maximum (FWHM), detection accuracy (DA) and signal-to-noise ratio (SNR) have been analysed. The results showed the detection range of this optical sensor was 0.01 to 10 ppm, and it was saturated for higher concentration of Co2+. The sensitivity obtained was 0.1188 ppm-1 for low concentration of Co2+ ranged from 0.01 to 1 ppm. The FWHM and DA were consistent for all concentration of Co2+, while the SNR of the SPR signal increased with the Co2+ concentration. The SPR angle shifts were also fitted using Langmuir, Freundlich and Sips (Langmuir-Freundlich) isotherm models, where Sips model fitted the best with the binding affinity of 0.939 ppm-1. The results proved that the novel chitosan-graphene oxide/CdS QDs modified gold thin film can detect Co2+ via SPR spectroscopy.

7.
Mikrochim Acta ; 186(4): 261, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30927085

RESUMO

A nanocomposite consisting of electrochemically reduced graphene oxide, poly(Eriochrome black T) and gold nanoparticles (ERGO-pEBT/AuNPs) was prepared for the simultaneous detection of resorcinol (RC), catechol (CC), and hydroquinone (HQ). The electrochemical oxidation of HQ, CC, and RC was analysed by using cyclic voltammetry and differential pulse voltammetry. Three well-separated potentials were found at 166, 277, and 660 mV (vs. Ag/AgCl) for HQ, CC, and RC, respectively The linear ranges were 0.52-31.4, 1.44-31.2, and 3.8-72.2 µM for HQ, CC, and RC, respectively. The limits of detections (LODs) for both individual and simultaneous detections are negligibly different are (15, 8, and 39 nM, respectively). Graphical abstract Voltammetric determination of hydroquinone, catechol, and resorcinol at ERGO-pEBT/AuNPs resulted in high peak currents and outstanding oxidation potential separation of the analytes.

8.
Mikrochim Acta ; 186(12): 804, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31745737

RESUMO

A fluorometric assay is described for highly sensitive quantification of Escherichia coli O157:H7. Reporter oligos were immobilized on graphene quantum dots (GQDs), and quencher oligos were immobilized on gold nanoparticles (AuNPs). Target DNA was co-hybridized with reporter oligos on the GQDs and quencher oligos on AuNPs. This triggers quenching of fluorescence (with excitation/emission peaks at 400 nm/530 nm). On introducing target into the system, fluorescence is quenched by up to 95% by 100 nM concentrations of target oligos having 20 bp. The response to the fliC gene of E. coli O157:H7 increases with the logarithm of the concentration in the range from 0.1 nM to 150 nM. The limit of detection is 1.1 ± 0.6 nM for n = 3. The selectivity and specificity of the assay was confirmed by evaluating the various oligos sequences and PCR product (fliC gene) amplified from genomic DNA of the food samples spiked with E. coli O157:H7. Graphical abstractSchematic representation of fluorometric assay for highly sensitive quantification of Escherichia coli O157:H7 based on fluorescence quenching gene assay for fliC gene of E. coli O157:H7.


Assuntos
DNA Bacteriano/análise , Escherichia coli O157/isolamento & purificação , Grafite/química , Nanopartículas Metálicas/química , Pontos Quânticos/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Animais , Queijo/microbiologia , DNA Bacteriano/genética , Escherichia coli O157/genética , Proteínas de Escherichia coli/genética , Flagelina/genética , Contaminação de Alimentos/análise , Ouro/química , Ácidos Nucleicos Imobilizados/química , Ácidos Nucleicos Imobilizados/genética , Hibridização de Ácido Nucleico , Aves Domésticas/microbiologia
9.
Opt Express ; 26(26): 34880-34893, 2018 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-30650905

RESUMO

In this research, surface plasmon resonance (SPR) spectroscopy was used for sensing copper ion by combining the SPR with nanocrystalline cellulose modified by hexadecyltrimethylammonium bromide and graphene oxide composite (CTA-NCC/GO) thin film. The binding of Cu2+ on CTA-NCC/GO thin film was monitored by using SPR spectroscopy. By using the obtained SPR curve, detection range, binding affinity, sensitivity, full width at half maximum (FWHM), data accuracy (DA), and signal-to-noise ratio (SNR) have been calculated. The results showed that the sensor detection range was 0.01 until 0.5 ppm, and that it reached a saturation value. Moreover, the resonance angle shift followed the Langmuir isotherm model with a binding affinity constant of 4.075 × 103 M-1. A high sensitivity of 3.271° ppm-1 also was obtained for low Cu2+ concentration ranged from 0.01 to 0.1 ppm. For the FWHM, the lowest value calculated was at 0.08 and 0.1 ppm, which is 3.35°. The DA of the SPR signal consecutively highest at 0.08 and 0.1 ppm. Besides that, the SNR of the SPR signal increases with the Cu2+ concentrations. The CTA-NCC/GO thin film morphological properties were also studied by using atomic force microscopy. The rms roughness values, which were obtained before and after in contact with Cu2+, were 3.51 nm and 2.46 nm, respectively.

10.
Sensors (Basel) ; 18(6)2018 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-29899214

RESUMO

In the present study, a beneficial approach for the ultrasensitive and affordable naked eye detection and diagnosis of tuberculosis (TB) by utilizing plasmonic enzyme-linked immunosorbent assay (ELISA) via antibody-antigen interaction was studied. Here, the biocatalytic cycle of the intracellular enzymes links to the formation and successive growth of the gold nanoparticles (GNPs) for ultrasensitive detection. The formation of different colored solutions by the plasmonic nanoparticles in the presence of enzyme labels links directly to the existence or non-existence of the TB analytes in the sample solutions. For disease detection, the adapted protocol is based mainly on the conventional ELISA procedure that involves catalase-labeled antibodies, i.e., the enzymes consume hydrogen peroxide and further produce GNPs with the addition of gold (III) chloride. The amount of hydrogen peroxide remaining in the solution determines whether the GNPs solution is to be formed in the color blue or the color red, as it serves as a confirmation for the naked eye detection of TB analytes. However, the conventional ELISA method only shows tonal colors that need a high concentration of analyte to achieve high confidence levels for naked eye detection. Also, in this research, we proposed the incorporation of protein biomarker, Mycobacterium tuberculosis ESAT-6-like protein esxB (CFP-10), as a means of TB detection using plasmonic ELISA. With the use of this technique, the CFP-10 detection limit can be lowered to 0.01 µg/mL by the naked eye. Further, our developed technique was successfully tested and confirmed with sputum samples from patients diagnosed with positive TB, thereby providing enough evidence for the utilization of our technique in the early diagnosis of TB disease.


Assuntos
Proteínas de Bactérias/análise , Ensaio de Imunoadsorção Enzimática , Tuberculose/diagnóstico , Proteínas de Bactérias/imunologia , Ouro/química , Humanos , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Limite de Detecção , Nanopartículas Metálicas/química , Mycobacterium tuberculosis/metabolismo , Tuberculose/microbiologia
11.
Sensors (Basel) ; 18(11)2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30441776

RESUMO

A rapid and sensitive sandwich electrochemical immunosensor was developed based on the fabrication of the graphene/polyaniline (GP/PANI) nanocomposite onto screen-printed gold electrode (SPGE) for detection of tuberculosis biomarker 10-kDa culture filtrate protein (CFP10). The prepared GP/PANI nanocomposite was characterized using Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FESEM). The chemical bonding and morphology of GP/PANI-modified SPGE were studied by Raman spectroscopy and FESEM coupled with energy dispersive X-ray spectroscopy, respectively. From both studies, it clearly showed that GP/PANI was successfully coated onto SPGE through drop cast technique. Cyclic voltammetry was used to study the electrochemical properties of the modified electrode. The effective surface area for GP/PANI-modified SPGE was enhanced about five times compared with bare SPGE. Differential pulse voltammetry was used to detect the CFP10 antigen. The GP/PANI-modified SPGE that was fortified with sandwich type immunosensor exhibited a wide linear range (20⁻100 ng/mL) with a low detection limit of 15 ng/mL. This proposed electrochemical immunosensor is sensitive, low sample volume, rapid and disposable, which is suitable for tuberculosis detection in real samples.


Assuntos
Técnicas Biossensoriais , Fragmentos de Peptídeos/isolamento & purificação , Tuberculose/diagnóstico , Compostos de Anilina/química , Diagnóstico Precoce , Técnicas Eletroquímicas/métodos , Grafite/química , Humanos , Limite de Detecção , Nanopartículas Metálicas/química , Microscopia Eletrônica de Varredura/métodos , Mycobacterium tuberculosis/isolamento & purificação , Mycobacterium tuberculosis/patogenicidade , Fragmentos de Peptídeos/imunologia , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Tuberculose/imunologia
12.
Planta ; 246(3): 567-577, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28620814

RESUMO

MAIN CONCLUSION: X-ray microtomography results revealed that delignification process damaged the oil palm fibers, which correlated well with reduction of lignin components and increase of the phenolic content. Biodegradation investigation of natural fibers normally focuses on physico-chemical analysis, with less emphasis on physical aspect like fiber structures affect from microbial activity. In this work, the performance of Pycnoporus sanguineus to delignify oil palm empty fruit bunch fibers through solid-state fermentation utilizing various ratio of POME sludge was reported. In addition to tensile testing, physico-chemical and X-ray microtomography (µ-CT) analyses on the oil palm fibers were conducted to determine the effectiveness of the degradation process. The best ratio of fiber to fungi (60:40) was chosen based on the highest lignin loss and total phenolic content values and further investigation was performed to obtain fermentation kinetics data of both laccase and manganese peroxidase. µ-CT results revealed that delignification process damaged the pre-treated and untreated fibers structure, as evident from volume reduction after degradation process. This is correlated with reduction of lignin component and increase of the phenolic content, as well as lower stress-strain curves of the pre-treated fibers compared to the untreated ones (from tensile testing). It is suggested that P. sanguineus preferred to consume the outer layer of the fiber, before it penetrates through the cellular structure of the inner fiber.


Assuntos
Arecaceae/metabolismo , Lignina/metabolismo , Biodegradação Ambiental , Fermentação , Pycnoporus/metabolismo , Resistência à Tração , Microtomografia por Raio-X
13.
J Mater Sci Mater Med ; 28(9): 138, 2017 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-28791524

RESUMO

5-Fluororaucil (5-FU) as anti-cancer drug was reported to induce thymidine synthase (TS) overexpression and cancer cell resistance. To improve its therapeutic efficacy and selective targeting, here we developed a targeted delivery system mediated by the active ligand-folate receptor chemistry to deliver the 5-FU drug selectively into the tumor microenvironment. The preparation was achieved by exploring chitosan (CS)-biopolymer based system with folic acid (FA)-conjugation. The 5-FU@FACS-Mn:ZnS quantum dots (QDs) based on the histological assessment conducted in the 4T1 challenged mice showed an improved tumor remission in the liver, spleen and lungs. The 5-FU@FACS-Mn:ZnS composite induced anti-proliferative properties in these organs as compared to the free 5-FU drug. Unlike the 5-FU@FACS-Mn:ZnS treated groups which showed some specific morphological changes such as cell shrinkage without obvious presence of adipocytes, the excised section of the tumor in the untreated control group and the free 5-FU drug treated group showed necrotic and degenerated cells; these cells are multifocally distributed in the tumor mass with evidence of widely distributed adipocytes within the tumor mass. These findings suggest that the 5-FU@FACS-Mn:ZnS composite has a superior role during the induction of apoptosis in the 4T1 cells as compared to the free 5-FU drug treated groups. The results of the study therefore suggest that the impregnation of 5-FU anti-cancer drug within the FACS-Mn:ZnS system significantly improves its selective targeting efficacy, in addition to improving the anti-proliferative properties and attenuate possible tumor resistances to the 5-FU drug. The work discusses about the anti-metastatic effects of folic acid-bound 5-Fluororacil loaded Mn:ZnS quantum dots towards 4T1 cell line proliferation in mice based on the histological analysis.


Assuntos
Antineoplásicos/administração & dosagem , Fluoruracila/administração & dosagem , Fluoruracila/uso terapêutico , Compostos de Manganês/química , Neoplasias Experimentais/tratamento farmacológico , Sulfetos/química , Compostos de Zinco/química , Animais , Antimetabólitos Antineoplásicos/administração & dosagem , Antimetabólitos Antineoplásicos/uso terapêutico , Quitosana , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Pontos Quânticos
14.
Sensors (Basel) ; 17(7)2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28671562

RESUMO

An attractive electrochemical sensor of poly(3,4-ethylenedioxythiophene)/reduced graphene oxide electrode (PrGO) was developed for an electrochemical technique for uric acid (UA) detection in the presence of ascorbic acid (AA). PrGO composite film showed an improved electrocatalytic activity towards UA oxidation in pH 6.0 (0.1 M PBS). The PrGO composite exhibited a high current signal and low charge transfer resistance (Rct) compared to a reduced graphene oxide (rGO) electrode or a bare glassy carbon electrode (GCE). The limit of detection and sensitivity of PrGO for the detection of UA are 0.19 µM (S/N = 3) and 0.01 µA/µM, respectively, in the range of 1-300 µM of UA.

15.
Sensors (Basel) ; 17(7)2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28671561

RESUMO

Carbon nanotubes (CNTs) reinforced with gold nanoparticles (AuNPs) and chitosan nanoparticles (CTSNPs) were anchored on a screen-printed electrode to fabricate a multi-walled structure for the detection of quinoline. The surface morphology of the nanocomposites and the modified electrode was examined by an ultra-high resolution field emission scanning electron microscope (FESEM), and Fourier-transform infrared (FT-IR) spectroscopy was used to confirm the presence of specific functional groups on the multi-walled carbon nanotubes MWCNTs. Cyclic voltammetry (CV) and linear sweep voltammetry (LSV) were used to monitor the layer-by-layer assembly of ultra-thin films of nanocomposites on the surface of the electrode and other electrochemical characterizations. Under optimized conditions, the novel sensor displayed outstanding electrochemical reactivity towards the electro-oxidation of quinoline. The linear range was fixed between 0.0004 and 1.0 µM, with a limit of detection (LOD) of 3.75 nM. The fabricated electrode exhibited high stability with excellent sensitivity and selectivity, specifically attributable to the salient characteristics of AuNPs, CTSNPs, and MWCNTs and the synergistic inter-relationship between them. The newly developed electrode was tested in the field. The Ipa increased with an increase in the amount of quinoline solution added, and the peak potential deviated minimally, depicting the real capability of the newly fabricated electrode.


Assuntos
Nanotubos de Carbono , Técnicas Biossensoriais , Técnicas Eletroquímicas , Eletrodos , Ouro , Nanopartículas Metálicas , Quinolinas , Espectroscopia de Infravermelho com Transformada de Fourier
16.
Sensors (Basel) ; 17(5)2017 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-28509848

RESUMO

In this research work, electrochemical biosensor was fabricated based on immobilization of tyrosinase onto graphene-decorated gold nanoparticle/chitosan (Gr-Au-Chit/Tyr) nanocomposite-modified screen-printed carbon electrode (SPCE) for the detection of phenolic compounds. The nanocomposite film was constructed via solution casting method. The electrocatalytic activity of the proposed biosensor for phenol detection was studied using differential pulse voltammetry (DPV) and cyclic voltammetry (CV). Experimental parameters such as pH buffer, enzyme concentration, ratio of Gr-Au-Chit, accumulation time and potential were optimized. The biosensor shows linearity towards phenol in the concentration range from 0.05 to 15 µM with sensitivity of 0.624 µA/µM and the limit of detection (LOD) of 0.016 µM (S/N = 3). The proposed sensor also depicts good reproducibility, selectivity and stability for at least one month. The biosensor was compared with high-performance liquid chromatography (HPLC) method for the detection of phenol spiked in real water samples and the result is in good agreement and comparable.

17.
Sensors (Basel) ; 17(7)2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28671559

RESUMO

A semiconducting water-soluble core-shell quantum dots (QDs) system capped with thiolated ligand was used in this study for the sensitive detection of glucose in aqueous samples. The QDs selected are of CdSe-coated ZnS and were prepared in house based on a hot injection technique. The formation of ZnS shell at the outer surface of CdSe core was made via a specific process namely, SILAR (successive ionic layer adsorption and reaction). The distribution, morphology, and optical characteristics of the prepared core-shell QDs were assessed by transmission electron microscopy (TEM) and spectrofluorescence, respectively. From the analysis, the results show that the mean particle size of prepared QDs is in the range of 10-12 nm and that the optimum emission condition was displayed at 620 nm. Further, the prepared CdSe/ZnS core shell QDs were modified by means of a room temperature ligand-exchange method that involves six organic ligands, L-cysteine, L-histidine, thio-glycolic acid (TGA or mercapto-acetic acid, MAA), mercapto-propionic acid (MPA), mercapto-succinic acid (MSA), and mercapto-undecanoic acid (MUA). This process was chosen in order to maintain a very dense water solubilizing environment around the QDs surface. From the analysis, the results show that the CdSe/ZnS capped with TGA (CdSe/ZnS-TGA) exhibited the strongest fluorescence emission as compared to others; hence, it was tested further for the glucose detection after their treatment with glucose oxidase (GOx) and horseradish peroxidase (HRP) enzymes. Here in this study, the glucose detection is based on the fluorescence quenching effect of the QDs, which is correlated to the oxidative reactions occurred between the conjugated enzymes and glucose. From the analysis of results, it can be inferred that the resultant GOx:HRP/CdSe/ZnS-TGA QDs system can be a suitable platform for the fluorescence-based determination of glucose in the real samples.


Assuntos
Pontos Quânticos , Compostos de Cádmio , Glucose , Compostos de Selênio , Sulfetos , Sulfato de Zinco
18.
Sensors (Basel) ; 17(12)2017 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-29207463

RESUMO

This article describes chemically modified polyaniline and graphene (PANI/GP) composite nanofibers prepared by self-assembly process using oxidative polymerization of aniline monomer and graphene in the presence of a solution containing poly(methyl vinyl ether-alt-maleic acid) (PMVEA). Characterization of the composite nanofibers was carried out by Fourier transform infrared (FTIR) and Raman spectroscopy, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). SEM images revealed the size of the PANI nanofibers ranged from 90 to 360 nm in diameter and was greatly influenced by the proportion of PMVEA and graphene. The composite nanofibers with an immobilized DNA probe were used for the detection of Mycobacterium tuberculosis by using an electrochemical technique. A photochemical indicator, methylene blue (MB) was used to monitor the hybridization of target DNA by using differential pulse voltammetry (DPV) method. The detection range of DNA biosensor was obtained from of 10-6-10-9 M with the detection limit of 7.853 × 10-7 M under optimum conditions. The results show that the composite nanofibers have a great potential in a range of applications for DNA sensors.


Assuntos
Nanofibras , Compostos de Anilina , Técnicas Biossensoriais , DNA , Grafite , Mycobacterium tuberculosis
19.
Sensors (Basel) ; 16(1)2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26805829

RESUMO

In this work, a novel electrochemical sensor was fabricated for determination of amoxicillin in bovine milk samples by decoration of carboxylated multi-walled carbon nanotubes (MWCNTs) with gold nanoparticles (AuNPs) using ethylenediamine (en) as a cross linker (AuNPs/en-MWCNTs). The constructed nanocomposite was homogenized in dimethylformamide and drop casted on screen printed electrode. Field emission scanning electron microscopy (FESEM), energy dispersive X-Ray (EDX), X-Ray diffraction (XRD) and cyclic voltammetry were used to characterize the synthesized nanocomposites. The results show that the synthesized nanocomposites induced a remarkable synergetic effect for the oxidation of amoxicillin. Effect of some parameters, including pH, buffer, scan rate, accumulation potential, accumulation time and amount of casted nanocomposites, on the sensitivity of fabricated sensor were optimized. Under the optimum conditions, there was two linear calibration ranges from 0.2-10 µM and 10-30 µM with equations of Ipa (µA) = 2.88C (µM) + 1.2017; r = 0.9939 and Ipa (µA) = 0.88C (µM) + 22.97; r = 0.9973, respectively. The limit of detection (LOD) and limit of quantitation (LOQ) were calculated as 0.015 µM and 0.149 µM, respectively. The fabricated electrochemical sensor was successfully applied for determination of Amoxicillin in bovine milk samples and all results compared with high performance liquid chromatography (HPLC) standard method.


Assuntos
Amoxicilina/análise , Resíduos de Drogas/análise , Técnicas Eletroquímicas/instrumentação , Ouro/química , Leite/química , Nanotubos de Carbono/química , Animais , Bovinos , Técnicas Eletroquímicas/métodos , Nanotubos de Carbono/ultraestrutura
20.
Sensors (Basel) ; 16(9)2016 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-27571080

RESUMO

In the present study, the construction of arrays on silicon for naked-eye detection of DNA dengue was demonstrated. The array was created by exposing a polyethylene glycol (PEG) silane monolayer to 254 nm ultraviolet (UV) light through a photomask. Formation of the PEG silane monolayer and photomodifed surface properties was thoroughly characterized by using atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and contact angle measurements. The results of XPS confirmed that irradiation of ultraviolet (UV) light generates an aldehyde functional group that offers conjugation sites of amino DNA probe for detection of a specific dengue virus target DNA. Employing a gold enhancement process after inducing the electrostatic interaction between positively charged gold nanoparticles and the negatively charged target DNA hybridized to the DNA capture probe allowed to visualize the array with naked eye. The developed arrays demonstrated excellent performance in diagnosis of dengue with a detection limit as low as 10 pM. The selectivity of DNA arrays was also examined using a single base mismatch and noncomplementary target DNA.


Assuntos
Dengue/diagnóstico , Polietilenoglicóis/química , Silanos/química , Coloração e Rotulagem , Cetrimônio , Compostos de Cetrimônio/química , Ouro/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Microscopia de Força Atômica , Espectroscopia Fotoeletrônica , Eletricidade Estática , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA