Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ecol ; : e17507, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39158107

RESUMO

Denitrification is a crucial process in the global nitrogen cycle, in which two functionally equivalent genes, nirS and nirK, catalyse the critical reaction and are usually used as marker genes. The nirK gene can function independently, whereas nirS requires additional genes to encode nitrite reductase and is more sensitive to environmental factors than nirK. However, the ecological differentiation mechanisms of those denitrifying microbial communities and their adaptation strategies to environmental stresses remain unclear. Here, we conducted metagenomic analysis for sediments and bioreactor samples from Lake Donghu, China. We found that nirS-type denitrifying communities had a significantly lower horizontal gene transfer frequency than that of nirK-type denitrifying communities, and nirS gene phylogeny was more congruent with taxonomy than that of nirK gene. Metabolic reconstruction of metagenome-assembled genomes further revealed that nirS-type denitrifying communities have robust metabolic systems for energy conservation, enabling them to survive under environmental stresses. Nevertheless, nirK-type denitrifying communities seemed to adapt to oxygen-limited environments with the ability to utilize various carbon and nitrogen compounds. Thus, this study provides novel insights into the ecological differentiation mechanism of nirS and nirK-type denitrifying communities, as well as the regulation of the global nitrogen cycle and greenhouse gas emissions.

2.
Mol Ecol ; 32(17): 4940-4952, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37452629

RESUMO

Numerous studies have investigated the spatiotemporal variability in water microbial communities, yet the effects of relic DNA on microbial community profiles, especially microeukaryotes, remain far from fully understood. Here, total and active bacterial and microeukaryotic community compositions were characterized using propidium monoazide (PMA) treatment coupled with high-throughput sequencing in a river-reservoir ecosystem. Beta diversity analysis showed a significant difference in community composition between both the PMA untreated and treated bacteria and microeukaryotes; however, the differentiating effect was much stronger for microeukaryotes. Relic DNA only resulted in underestimation of the relative abundances of Bacteroidota and Nitrospirota, while other bacterial taxa exhibited no significant changes. As for microeukaryotes, the relative abundances of some phytoplankton (e.g. Chlorophyta, Dinoflagellata and Ochrophyta) and fungi were greater after relic DNA removal, whereas Cercozoa and Ciliophora showed the opposite trend. Moreover, relic DNA removal weakened the size and complexity of cross-trophic microbial networks and significantly changed the relationships between environmental factors and microeukaryotic community composition. However, there was no significant difference in the rates of temporal community turnover between the PMA untreated and treated samples for either bacteria or microeukaryotes. Overall, our results imply that the presence of relic DNA in waters can give misleading information of the active microbial community composition, co-occurrence networks and their relationships with environmental conditions. More studies of the abundance, decay rate and functioning of nonviable DNA in freshwater ecosystems are highly recommended in the future.


Assuntos
Ecossistema , Microbiota , Rios/microbiologia , Microbiota/genética , DNA/genética , Fitoplâncton , Consórcios Microbianos , Bactérias/genética
3.
Environ Geochem Health ; 45(11): 8633-8662, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37682507

RESUMO

The present study quantified Ni, Cu, Cr, Pb, Cd, As, Zn, and Fe levels in road dust collected from a variety of sites in Tangail, Bangladesh. The goal of this study was to use a matrix factorization model to identify the specific origin of these components and to evaluate the ecological and health hazards associated with each potential origin. The inductively coupled plasma mass spectrometry was used to determine the concentrations of Cu, Ni, Cr, Pb, As, Zn, Cd, and Fe. The average concentrations of these elements were found to be 30.77 ± 8.80, 25.17 ± 6.78, 39.49 ± 12.53, 28.74 ± 7.84, 1.90 ± 0.79, 158.30 ± 28.25, 2.42 ± 0.69, and 18,185.53 ± 4215.61 mg/kg, respectively. Compared to the top continental crust, the mean values of Cu, Pb, Zn, and Cd were 1.09, 1.69, 2.36, and 26.88 times higher, respectively. According to the Nemerow integrated pollution index (NIPI), pollution load index (PLI), Nemerow integrated risk index (NIRI), and potential ecological risk (PER), 84%, 42%, 30%, and 16% of sampling areas, respectively, which possessed severe contamination. PMF model revealed that Cu (43%), Fe (69.3%), and Cd (69.2%) were mainly released from mixed sources, natural sources, and traffic emission, respectively. Traffic emission posed high and moderate risks for modified NIRI and potential ecological risks. The calculated PMF model-based health hazards indicated that the cancer risk value for traffic emission, natural, and mixed sources had been greater than (1.0E-04), indicating probable cancer risks and that traffic emission posed 38% risk to adult males where 37% for both adult females and children.


Assuntos
Metais Pesados , Neoplasias , Adulto , Criança , Humanos , Poeira/análise , Cádmio/análise , Chumbo/análise , Medição de Risco , Monitoramento Ambiental , Metais Pesados/toxicidade , Metais Pesados/análise , Cidades , China
4.
BMC Plant Biol ; 22(1): 287, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35698026

RESUMO

BACKGROUND: To our knowledge, the role of exogenous fluoride (F-) on aluminum (Al)-stress mitigation in plants has not been investigated yet. In this experiment, barley (Hordeum vulgaris) seedlings were exposed to excessive Al3+ concentrations (aluminum chloride, 0.5, 1.0, 2.0, 3.0, and 4.0 mM) with and without fluoride (0.025% sodium fluoride) to explore the possible roles of fluoride on the alleviation of Al-toxicity. RESULTS: Overall, Al-stress caused inhibition of growth and the production of photosynthetic pigments. Principal component analysis showed that the growth inhibitory effects were driven by increased oxidative stress and the interruption of water balance in barley under Al-stress. Fluoride priming, on the other hand, enhanced growth traits, chlorophyll a and b content, as well as invigorated the protection against oxidative damage by enhancing overall antioxidant capacity. Fluoride also improved osmotic balance by protecting the plasma membrane. Fluoride reduced endogenous Al3+ content, restored Al-induced inhibition of glutathione-S-transferase, and increased  the contents of phytochelatins and metallothioneins, suggesting that fluoride reduced Al3+ uptake and improved chelation of Al3+. CONCLUSIONS: Aluminum chloride-induced harmful effects are abridged by sodium fluoride on barely via enhancing antioxidative responses, the chelation mechanism causing reduction of Al uptake and accumulation of barely tissues. Advanced investigations are necessary to uncover the putative mechanisms underpinning fluoride-induced Al-stress tolerance in barley and other economically significant crops, where our results might serve as a solid reference.


Assuntos
Hordeum , Alumínio/toxicidade , Cloreto de Alumínio/farmacologia , Antioxidantes/metabolismo , Clorofila A , Fluoretos/toxicidade , Hordeum/metabolismo , Estresse Oxidativo , Plântula/metabolismo , Fluoreto de Sódio/farmacologia
5.
Arch Microbiol ; 204(3): 199, 2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35220488

RESUMO

This study was aimed to evaluate eggplant's growth-enhancing activity of chlorpyrifos and diazinon-degrading endophytic and rhizospheric soil bacteria isolated from cauliflower and tomato roots and the rhizospheric soil of rice roots, respectively. The identified endophytes belong to the Acinetobacter, Enterobacter and Klebsiella genera, while rhizospheric soil isolates belong to Pantoea, Acinetobacter, Kosakonia, Morganella, Enterobacter, and Klebsiella genera with species variation and genetic distances. All the strain's consumed 100% (50 mg/5 mL) chlorpyrifos and diazinon after 14 days of exposure, except for Pantoea sp. HSTU-Sny4 (84%) and Kosakonia sp. HSTU-ASn39 (42%). The strain's exhibited N-fixation, P-solubilization, indole-3-acetic acid (IAA), and ACC-deaminase production capabilities. The individual strain's and consortium treatment enhanced eggplant growth at germination, seedling, vegetative and reproductive stages. Plant growth-promoting genes, e.g., nif-cluster, chemotaxis, phosphates, sulfur, abiotic stress, chemotaxis, biofilm formation and organophosphorus insecticide-degrading genes were annotated in Klebsiella sp. HSTU-Sny5 and Morganella sp. HSTU-ASny43 genomes. Importantly, the mixed consortium supplemented with 40% urea-treated eggplants demonstrated similar growth parameters compared to the 100% urea eggplants. Plenty of insecticide-degrading proteins belonged to HSTU-Sny5 and HSTU-ASny43 strain's and had interacted with 100 different insecticides as confirmed in virtual screening. This research has a significant role in reducing the application of chemical fertilizer and bioremediation of pesticides in agriculture.


Assuntos
Inseticidas , Solanum melongena , Endófitos , Inseticidas/metabolismo , Inseticidas/farmacologia , Compostos Organofosforados/metabolismo , Raízes de Plantas/microbiologia , Solo , Solanum melongena/metabolismo
6.
Mar Drugs ; 20(5)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35621930

RESUMO

Fucoxanthin, belonging to the xanthophyll class of carotenoids, is a natural antioxidant pigment of marine algae, including brown macroalgae and diatoms. It represents 10% of the total carotenoids in nature. The plethora of scientific evidence supports the potential benefits of nutraceutical and pharmaceutical uses of fucoxanthin for boosting human health and disease management. Due to its unique chemical structure and action as a single compound with multi-targets of health effects, it has attracted mounting attention from the scientific community, resulting in an escalated number of scientific publications from January 2017 to February 2022. Fucoxanthin has remained the most popular option for anti-cancer and anti-tumor activity, followed by protection against inflammatory, oxidative stress-related, nervous system, obesity, hepatic, diabetic, kidney, cardiac, skin, respiratory and microbial diseases, in a variety of model systems. Despite much pharmacological evidence from in vitro and in vivo findings, fucoxanthin in clinical research is still not satisfactory, because only one clinical study on obesity management was reported in the last five years. Additionally, pharmacokinetics, safety, toxicity, functional stability, and clinical perspective of fucoxanthin are substantially addressed. Nevertheless, fucoxanthin and its derivatives are shown to be safe, non-toxic, and readily available upon administration. This review will provide pharmacological insights into fucoxanthin, underlying the diverse molecular mechanisms of health benefits. However, it requires more activity-oriented translational research in humans before it can be used as a multi-target drug.


Assuntos
Neoplasias , Alga Marinha , Carotenoides , Humanos , Alga Marinha/química , Xantofilas/química , Xantofilas/farmacologia , Xantofilas/uso terapêutico
7.
J Environ Sci (China) ; 112: 140-151, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34955197

RESUMO

Urbanization often exerts multiple effects on aquatic and terrestrial organisms, including changes in biodiversity, species composition and ecosystem functions. However, the impacts of urbanization on river phytoplankton in subtropical urbanizing watersheds remain largely unknown. Here, we explored the effects of urbanization on phytoplankton community structure (i.e., biomass, community composition and diversity) and function (i.e., resource use efficiency) in a subtropical river at watershed scale in southeast China over 6 years. A total of 318 phytoplankton species belonging into 120 genera and 7 phyla were identified from 108 samples. Bacillariophyta biomass showed an increasing trend with increasing urbanization level. The phytoplankton community shifted from Chlorophyta dominance in rural upstream waters to Bacillariophyta dominance in urbanized downstream waters. Furthermore, phytoplankton diversity and resource use efficiency (RUE = phytoplankton biomass/total phosphorus) were significantly decreased with increasing urbanization level from upstream to downstream. Phytoplankton RUE exhibited a significant positive correlation with species richness, but a negative correlation with phytoplankton evenness. The variation in environmental factors (turbidity, total nitrogen, NH4+-N, total phosphorus, PO43--P and percentage urbanized area) was significantly correlated with phytoplankton diversity and RUE. Overall, our results revealed the influence of urbanization on phytoplankton community structure and ecosystem function was due to its altering the environmental conditions. Therefore, human-driven urbanization may play crucial roles in shaping the structure and function of phytoplankton communities in subtropical rivers, and the mechanism of this process can provide important information for freshwater sustainable uses, watershed management and conservation.


Assuntos
Fitoplâncton , Urbanização , Biodiversidade , China , Ecossistema , Humanos , Rios , Estações do Ano
8.
Mar Drugs ; 19(3)2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33804766

RESUMO

Alzheimer's disease (AD) is a degenerative brain disorder characterized by a progressive decline in memory and cognition, mostly affecting the elderly. Numerous functional bioactives have been reported in marine organisms, and anti-Alzheimer's agents derived from marine resources have gained attention as a promising approach to treat AD pathogenesis. Marine sterols have been investigated for several health benefits, including anti-cancer, anti-obesity, anti-diabetes, anti-aging, and anti-Alzheimer's activities, owing to their anti-inflammatory and antioxidant properties. Marine sterols interact with various proteins and enzymes participating via diverse cellular systems such as apoptosis, the antioxidant defense system, immune response, and cholesterol homeostasis. Here, we briefly overview the potential of marine sterols against the pathology of AD and provide an insight into their pharmacological mechanisms. We also highlight technological advances that may lead to the potential application of marine sterols in the prevention and therapy of AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Organismos Aquáticos/metabolismo , Encéfalo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Esteróis/farmacologia , Doença de Alzheimer/imunologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacocinética , Antioxidantes/isolamento & purificação , Encéfalo/imunologia , Encéfalo/metabolismo , Encéfalo/patologia , Colesterol/metabolismo , Homeostase , Humanos , Mediadores da Inflamação/metabolismo , Fármacos Neuroprotetores/isolamento & purificação , Fármacos Neuroprotetores/farmacocinética , Estresse Oxidativo/efeitos dos fármacos , Esteróis/isolamento & purificação , Esteróis/farmacocinética
9.
J Intellect Disabil ; : 17446295211002355, 2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33882755

RESUMO

This cross-sectional study explored stressful situations of caregivers related to life events of their children suffering from neurodevelopmental disorders along with potential contributing factors. A total of 906 caregivers of children with diagnosed neurodevelopmental disorder, from eight administrative districts and two city corporation areas in Bangladesh were interviewed. The Family Stress and Coping Interview scale was used to evaluate parenting stress. The diagnosis of neurodevelopmental disorder at the outset, feelings about the cause of the disorder, future planning for employment and accommodation for the child and dealing with child sexuality were some important stressful situations for parents. Parenting stress is found to be higher among female [regression coefficient (B) = 5.09, p < 0.001] and less educated caregivers [B = 2.69, p < 0.01]. Increasing age of child [B = 0.82, p < 0.001] and diagnosis of neurodevelopmental disorder before child's second birthday [B = 4.22, p < 0.001] are also associated with higher parenting stress.

10.
Nitric Oxide ; 100-101: 7-16, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32283262

RESUMO

Being a chilling-sensitive staple crop, rice (Oryza sativa L.) is vulnerable to climate change. The competence of rice to withstand chilling stress should, therefore, be enhanced through technological tools. The present study employed chemical intervention like application of sodium nitroprusside (SNP) as nitric oxide (NO) donor and elucidated the underlying morpho-physiological and biochemical mechanisms of NO-mediated chilling tolerance in rice plants. At germination stage, germination indicators were interrupted by chilling stress (5.0 ± 1.0 °C for 8 h day-1), while pretreatment with 100 µM SNP markedly improved all the indicators. At seedling stage (14-day-old), chilling stress caused stunted growth with visible toxicity along with alteration of biochemical markers, for example, increase in oxidative stress markers (superoxide, hydrogen peroxide, and malondialdehyde) and osmolytes (total soluble sugar; proline and soluble protein content, SPC), and decrease in chlorophyll (Chl), relative water content (RWC), and antioxidants. However, NO application attenuated toxicity symptoms with improving growth attributes which might be related to enhance activities of antioxidants, mineral contents, Chl, RWC and SPC. Furthermore, principal component analysis indicated that water imbalance and increased oxidative damage were the main contributors to chilling injury, whereas NO-mediated mineral homeostasis and antioxidant defense were the critical determinants for chilling tolerance in rice. Collectively, our findings revealed that NO protects against chilling stress through valorizing cellular defense mechanisms, suggesting that exogenous application of NO could be a potential tool to evolve cold tolerance as well as climate resilience in rice.


Assuntos
Resposta ao Choque Frio/fisiologia , Proteção de Cultivos/métodos , Homeostase/efeitos dos fármacos , Óxido Nítrico/metabolismo , Oryza/efeitos dos fármacos , Temperatura Baixa , Germinação/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Malondialdeído/metabolismo , Doadores de Óxido Nítrico/farmacologia , Nitroprussiato/farmacologia , Peroxidases/metabolismo , Plântula/efeitos dos fármacos , Superóxidos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA