RESUMO
Present study investigates 39 brands of candies, chocolate, and litchis, purchased from Dhaka City, Bangladesh, for their moisture content, sulphated ash value, heavy metal, and bacterial contamination. All the brands showed moisture content (0.64%-4.775%) within the BSTI range, but sulphated ash values (18.80%-25.72%) were beyond the accepted value. Pb, Cd, Ni, and Cr ranged from 0.24-2.40 µg/g, 0.071-0.44 µg/g, 0.38-48.10 µg/g, and 0.50-12.79 µg/g, respectively, in the tested brands. Most of the brands contained Pb and Cd beyond the acceptable limits of WHO/FDA. Pb (2.24-2586.75 µg/g) was found in high concentration in the packaging of most brands, and Ni and Cd ranged from 2.10-108.05 µg/g and 1.68-45 µg/g, respectively. Bacterial presence was found in 15 brands, and 4 of them had a total aerobic bacterial count of >1 log CFU/g. Consumption of such contaminated confectionaries holds significant public health risks, specially in children, and demands necessary precautionary steps.
RESUMO
Snake venom is a valuable raw material for numerous therapeutic formulations because of its life-saving pharmacological potential. However, due to their high price, fake "snake venoms" have captured a significant portion of the global market, and there is currently no reliable reported DNA-based method available for quickly distinguishing between fakes and originals. Therefore, in this study, a set of newly designed snake-specific universal primers targeting mitochondrial D-loop fragments were employed to detect snake origins in commercial venom crystals by only simplex polymerase chain reaction analysis. Under the optimal thermal cycling conditions, only the 145-149 bp snake-specific mitochondrial D-loop fragments from pure and mixed backgrounds were amplified by the newly designed primers. Specificity was achieved by confirming no DNA amplification occurred in the DNA admixture of ten different chordates, and universality by individual DNA amplification of nine different snakes. The primers that efficiently amplified the minimum mitochondrial DNA contained in a total of 10-2 ng in a 10.0 µl reaction were also successfully able to detect the snake origin in commercial cobra venom crystals. These findings suggest that the newly designed primers can be used to differentiate the original and fake commercial snake venom crystals in order to achieve the highest standards of snake venom-based medications through amplifying the snake-specific mitochondrial D-loop fragments.