Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(3): 521-525, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38306979

RESUMO

High-quality predicted structures enable structure-based approaches to an expanding number of drug discovery programs. We propose that by utilizing free energy perturbation (FEP), predicted structures can be confidently employed to achieve drug design goals. We use structure-based modeling of hERG inhibition to illustrate this value of FEP.


Assuntos
Desenho de Fármacos , Descoberta de Drogas , Termodinâmica , Entropia
2.
J Chem Inf Model ; 63(17): 5592-5603, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37594480

RESUMO

Significant improvements have been made in the past decade to methods that rapidly and accurately predict binding affinity through free energy perturbation (FEP) calculations. This has been driven by recent advances in small-molecule force fields and sampling algorithms combined with the availability of low-cost parallel computing. Predictive accuracies of ∼1 kcal mol-1 have been regularly achieved, which are sufficient to drive potency optimization in modern drug discovery campaigns. Despite the robustness of these FEP approaches across multiple target classes, there are invariably target systems that do not display expected performance with default FEP settings. Traditionally, these systems required labor-intensive manual protocol development to arrive at parameter settings that produce a predictive FEP model. Due to the (a) relatively large parameter space to be explored, (b) significant compute requirements, and (c) limited understanding of how combinations of parameters can affect FEP performance, manual FEP protocol optimization can take weeks to months to complete, and often does not involve rigorous train-test set splits, resulting in potential overfitting. These manual FEP protocol development timelines do not coincide with tight drug discovery project timelines, essentially preventing the use of FEP calculations for these target systems. Here, we describe an automated workflow termed FEP Protocol Builder (FEP-PB) to rapidly generate accurate FEP protocols for systems that do not perform well with default settings. FEP-PB uses an active-learning workflow to iteratively search the protocol parameter space to develop accurate FEP protocols. To validate this approach, we applied it to pharmaceutically relevant systems where default FEP settings could not produce predictive models. We demonstrate that FEP-PB can rapidly generate accurate FEP protocols for the previously challenging MCL1 system with limited human intervention. We also apply FEP-PB in a real-world drug discovery setting to generate an accurate FEP protocol for the p97 system. FEP-PB is able to generate a more accurate protocol than the expert user, rapidly validating p97 as amenable to free energy calculations. Additionally, through the active-learning workflow, we are able to gain insight into which parameters are most important for a given system. These results suggest that FEP-PB is a robust tool that can aid in rapidly developing accurate FEP protocols and increasing the number of targets that are amenable to the technology.


Assuntos
Algoritmos , Protocolos de Quimioterapia Combinada Antineoplásica , Humanos , Cisplatino , Descoberta de Drogas
3.
J Chem Inf Model ; 63(10): 3171-3185, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37167486

RESUMO

In the hit identification stage of drug discovery, a diverse chemical space needs to be explored to identify initial hits. Contrary to empirical scoring functions, absolute protein-ligand binding free-energy perturbation (ABFEP) provides a theoretically more rigorous and accurate description of protein-ligand binding thermodynamics and could, in principle, greatly improve the hit rates in virtual screening. In this work, we describe an implementation of an accurate and reliable ABFEP method in FEP+. We validated the ABFEP method on eight congeneric compound series binding to eight protein receptors including both neutral and charged ligands. For ligands with net charges, the alchemical ion approach is adopted to avoid artifacts in electrostatic potential energy calculations. The calculated binding free energies correlate with experimental results with a weighted average of R2 = 0.55 for the entire dataset. We also observe an overall root-mean-square error (RMSE) of 1.1 kcal/mol after shifting the zero-point of the simulation data to match the average experimental values. Through ABFEP calculations using apo versus holo protein structures, we demonstrated that the protein conformational and protonation state changes between the apo and holo proteins are the main physical factors contributing to the protein reorganization free energy manifested by the overestimation of raw ABFEP calculated binding free energies using the holo structures of the proteins. Furthermore, we performed ABFEP calculations in three virtual screening applications for hit enrichment. ABFEP greatly improves the hit rates as compared to docking scores or other methods like metadynamics. The good performance of ABFEP in rank ordering compounds demonstrated in this work confirms it as a useful tool to improve the hit rates in virtual screening, thus facilitating hit discovery.


Assuntos
Proteínas , Ligantes , Ligação Proteica , Entropia , Proteínas/química , Termodinâmica
4.
J Chem Inf Model ; 62(3): 703-717, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35061383

RESUMO

The accurate prediction of binding affinity between protein and small molecules with free energy methods, particularly the difference in binding affinities via relative binding free energy calculations, has undergone a dramatic increase in use and impact over recent years. The improvements in methodology, hardware, and implementation can deliver results with less than 1 kcal/mol mean unsigned error between calculation and experiment. This is a remarkable achievement and beckons some reflection on the significance of calculation approaching the accuracy of experiment. In this article, we describe a statistical analysis of the implications of variance (standard deviation) of both experimental and calculated binding affinities with respect to the unknown true binding affinity. We reveal that plausible ratios of standard deviation in experiment and calculation can lead to unexpected outcomes for assessing the performance of predictions. The work extends beyond the case of binding free energies to other affinity or property prediction methods.


Assuntos
Proteínas , Entropia , Ligantes , Ligação Proteica , Proteínas/química , Termodinâmica
5.
J Chem Inf Model ; 62(8): 1905-1915, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35417149

RESUMO

The lead optimization stage of a drug discovery program generally involves the design, synthesis, and assaying of hundreds to thousands of compounds. The design phase is usually carried out via traditional medicinal chemistry approaches and/or structure-based drug design (SBDD) when suitable structural information is available. Two of the major limitations of this approach are (1) difficulty in rapidly designing potent molecules that adhere to myriad project criteria, or the multiparameter optimization (MPO) problem, and (2) the relatively small number of molecules explored compared to the vast size of chemical space. To address these limitations, we have developed AutoDesigner, a de novo design algorithm. AutoDesigner employs a cloud-native, multistage search algorithm to carry out successive rounds of chemical space exploration and filtering. Millions to billions of virtual molecules are explored and optimized while adhering to a customizable set of project criteria such as physicochemical properties and potency. Additionally, the algorithm only requires a single ligand with measurable affinity and a putative binding model as a starting point, making it amenable to the early stages of an SBDD project where limited data are available. To assess the effectiveness of AutoDesigner, we applied it to the design of novel inhibitors of d-amino acid oxidase (DAO), a target for the treatment of schizophrenia. AutoDesigner was able to generate and efficiently explore over 1 billion molecules to successfully address a variety of project goals. The compounds generated by AutoDesigner that were synthesized and assayed (1) simultaneously met not only physicochemical criteria, clearance, and central nervous system (CNS) penetration (Kp,uu) cutoffs but also potency thresholds and (2) fully utilize structural data to discover and explore novel interactions and a previously unexplored subpocket in the DAO active site. The reported data demonstrate that AutoDesigner can play a key role in accelerating the discovery of novel, potent chemical matter within the constraints of a given drug discovery lead optimization campaign.


Assuntos
Desenho de Fármacos , Descoberta de Drogas , Algoritmos , Aminoácidos/metabolismo , Sistema Nervoso Central/metabolismo
6.
Drug Discov Today Technol ; 39: 111-117, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34906321

RESUMO

Computational chemistry and structure-based design have traditionally been viewed as a subset of tools that could aid acceleration of the drug discovery process, but were not commonly regarded as a driving force in small molecule drug discovery. In the last decade however, there have been dramatic advances in the field, including (1) development of physics-based computational approaches to accurately predict a broad variety of endpoints from potency to solubility, (2) improvements in artificial intelligence and deep learning methods and (3) dramatic increases in computational power with the advent of GPUs and cloud computing, resulting in the ability to explore and accurately profile vast amounts of drug-like chemical space in silico. There have also been simultaneous advancements in structural biology such as cryogenic electron microscopy (cryo-EM) and computational protein-structure prediction, allowing for access to many more high-resolution 3D structures of novel drug-receptor complexes. The convergence of these breakthroughs has positioned structurally-enabled computational methods to be a driving force behind the discovery of novel small molecule therapeutics. This review will give a broad overview of the synergies in recent advances in the fields of computational chemistry, machine learning and structural biology, in particular in the areas of hit identification, hit-to-lead, and lead optimization.


Assuntos
Inteligência Artificial , Descoberta de Drogas , Desenho Assistido por Computador , Computadores , Desenho de Fármacos , Aprendizado de Máquina , Proteínas
7.
J Chem Inf Model ; 60(12): 6211-6227, 2020 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-33119284

RESUMO

Alchemical free-energy calculations are now widely used to drive or maintain potency in small-molecule lead optimization with a roughly 1 kcal/mol accuracy. Despite this, the potential to use free-energy calculations to drive optimization of compound selectivity among two similar targets has been relatively unexplored in published studies. In the most optimistic scenario, the similarity of binding sites might lead to a fortuitous cancellation of errors and allow selectivity to be predicted more accurately than affinity. Here, we assess the accuracy with which selectivity can be predicted in the context of small-molecule kinase inhibitors, considering the very similar binding sites of human kinases CDK2 and CDK9 as well as another series of ligands attempting to achieve selectivity between the more distantly related kinases CDK2 and ERK2. Using a Bayesian analysis approach, we separate systematic from statistical errors and quantify the correlation in systematic errors between selectivity targets. We find that, in the CDK2/CDK9 case, a high correlation in systematic errors suggests that free-energy calculations can have significant impact in aiding chemists in achieving selectivity, while in more distantly related kinases (CDK2/ERK2), the correlation in systematic error suggests that fortuitous cancellation may even occur between systems that are not as closely related. In both cases, the correlation in systematic error suggests that longer simulations are beneficial to properly balance statistical error with systematic error to take full advantage of the increase in apparent free-energy calculation accuracy in selectivity prediction.


Assuntos
Desenho de Fármacos , Simulação de Dinâmica Molecular , Teorema de Bayes , Sítios de Ligação , Humanos , Ligantes , Ligação Proteica , Termodinâmica
8.
J Chem Inf Model ; 60(9): 4311-4325, 2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32484669

RESUMO

The hit identification process usually involves the profiling of millions to more recently billions of compounds either via traditional experimental high-throughput screens (HTS) or computational virtual high-throughput screens (vHTS). We have previously demonstrated that, by coupling reaction-based enumeration, active learning, and free energy calculations, a similarly large-scale exploration of chemical space can be extended to the hit-to-lead process. In this work, we augment that approach by coupling large scale enumeration and cloud-based free energy perturbation (FEP) profiling with goal-directed generative machine learning, which results in a higher enrichment of potent ideas compared to large scale enumeration alone, while simultaneously staying within the bounds of predefined drug-like property space. We can achieve this by building the molecular distribution for generative machine learning from the PathFinder rules-based enumeration and optimizing for a weighted sum QSAR-based multiparameter optimization function. We examine the utility of this combined approach by designing potent inhibitors of cyclin-dependent kinase 2 (CDK2) and demonstrate a coupled workflow that can (1) provide a 6.4-fold enrichment improvement in identifying <10 nM compounds over random selection and a 1.5-fold enrichment in identifying <10 nM compounds over our previous method, (2) rapidly explore relevant chemical space outside the bounds of commercial reagents, (3) use generative ML approaches to "learn" the SAR from large scale in silico enumerations and generate novel idea molecules for a flexible receptor site that are both potent and within relevant physicochemical space, and (4) produce over 3 000 000 idea molecules and run 1935 FEP simulations, identifying 69 ideas with a predicted IC50 < 10 nM and 358 ideas with a predicted IC50 < 100 nM. The reported data suggest combining both reaction-based and generative machine learning for ideation results in a higher enrichment of potent compounds over previously described approaches and has the potential to rapidly accelerate the discovery of novel chemical matter within a predefined potency and property space.


Assuntos
Descoberta de Drogas , Preparações Farmacêuticas , Simulação por Computador , Objetivos , Aprendizado de Máquina
9.
J Chem Inf Model ; 59(3): 1017-1029, 2019 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-30758950

RESUMO

Chemical structure extraction from documents remains a hard problem because of both false positive identification of structures during segmentation and errors in the predicted structures. Current approaches rely on handcrafted rules and subroutines that perform reasonably well generally but still routinely encounter situations where recognition rates are not yet satisfactory and systematic improvement is challenging. Complications impacting the performance of current approaches include the diversity in visual styles used by various software to render structures, the frequent use of ad hoc annotations, and other challenges related to image quality, including resolution and noise. We present end-to-end deep learning solutions for both segmenting molecular structures from documents and predicting chemical structures from the segmented images. This deep-learning-based approach does not require any handcrafted features, is learned directly from data, and is robust against variations in image quality and style. Using the deep learning approach described herein, we show that it is possible to perform well on both segmentation and prediction of low-resolution images containing moderately sized molecules found in journal articles and patents.


Assuntos
Aprendizado Profundo , Descoberta de Drogas/métodos , Mineração de Dados , Documentação
10.
J Chem Inf Model ; 59(6): 2729-2740, 2019 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-31144815

RESUMO

Cyclic nucleotide phosphodiesterases (PDE's) are metalloenzymes that play a key role in regulating the levels of the ubiquitous second messengers, cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). In humans, 11 PDE protein families mediate numerous biochemical pathways throughout the body and are effective drug targets for the treatment of diseases ranging from central nervous system disorders to heart and pulmonary diseases. PDE's also share a highly conserved catalytic site (about 50%), thus making the design of selective drug candidates very challenging with classical structure-based design approaches given also the lack of publicly available co-crystal structures of pairs of PDE's with consistent biological data to be compared, as we show in our work. In this retrospective study, we apply free energy perturbation (FEP+) to predict the selectivity of inhibitors that bind two pairs of closely related PDE families: PDE9/1 and PDE5/6 where only 1 co-crystal structure per pair is publicly available. As another challenge, the p Ka of the PDE5/6 inhibitor is close to the experimental pH, making unclear the exact protonation state that should be used in the computational workflow. We demonstrate that running FEP+ on homology models constructed for these metalloenzymes accurately reproduces experimentally observed selectivity profiles also addressing the unclear protonation state to be used during computation with our recently developed p Ka-correction method. Based on these data, we conclude that FEP+ is a robust method for prediction of selectivity for this target class and may be helpful to address related lead optimization challenges in drug discovery.


Assuntos
Descoberta de Drogas , Inibidores de Fosfodiesterase/química , Inibidores de Fosfodiesterase/farmacologia , Diester Fosfórico Hidrolases/metabolismo , Sítios de Ligação/efeitos dos fármacos , Domínio Catalítico/efeitos dos fármacos , Descoberta de Drogas/métodos , Humanos , Ligantes , Simulação de Acoplamento Molecular , Diester Fosfórico Hidrolases/química , Termodinâmica
11.
J Chem Inf Model ; 59(9): 3955-3967, 2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31425654

RESUMO

Covalent inhibitors have emerged as an important drug class in recent years, largely due to their many unique advantages as compared to noncovalent inhibitors, including longer duration of action, lower prolonged systemic exposure, higher potency, and selectivity. However, the potential off-target toxicity of covalent inhibitors, particularly of irreversible covalent inhibitors, represents a great challenge in covalent drug development. Therefore, accurate calculation of protein covalent inhibitor reaction kinetics to guide the design of selective inhibitors would greatly benefit covalent drug discovery efforts. In the present paper, we present a computational method to calculate the relative reaction kinetics between congeneric irreversible covalent inhibitors and their protein receptors. The method combines density functional theory calculations of the transition state barrier height of the rate-limiting step for reaction between the warhead of the inhibitor and a single protein residue, and molecular-mechanics-based free energy calculations to account for the interactions between the ligand in the transition state and the protein environment. The method was tested on four pharmaceutically interesting irreversible covalent binding systems involving 28 ligands; the mean unsigned error (MUE) of the relative reaction rate for all pairs of ligands between the predictions and experimental results for these tested systems is 0.79 log unit. This is to our knowledge the first time where the reaction kinetics of protein irreversible covalent inhibition have been directly calculated with physics-based free energy calculation methods and transition state theory. We anticipate the outstanding accuracy demonstrated here across a broad range of target classes will have a strong impact on the design of selective covalent inhibitors.


Assuntos
Modelos Moleculares , Proteínas/antagonistas & inibidores , Proteínas/metabolismo , Descoberta de Drogas , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Cinética , Ligação Proteica , Proteínas/química
12.
J Chem Inf Model ; 59(9): 3782-3793, 2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31404495

RESUMO

The hit-to-lead and lead optimization processes usually involve the design, synthesis, and profiling of thousands of analogs prior to clinical candidate nomination. A hit finding campaign may begin with a virtual screen that explores millions of compounds, if not more. However, this scale of computational profiling is not frequently performed in the hit-to-lead or lead optimization phases of drug discovery. This is likely due to the lack of appropriate computational tools to generate synthetically tractable lead-like compounds in silico, and a lack of computational methods to accurately profile compounds prospectively on a large scale. Recent advances in computational power and methods provide the ability to profile much larger libraries of ligands than previously possible. Herein, we report a new computational technique, referred to as "PathFinder", that uses retrosynthetic analysis followed by combinatorial synthesis to generate novel compounds in synthetically accessible chemical space. In this work, the integration of PathFinder-driven compound generation, cloud-based FEP simulations, and active learning are used to rapidly optimize R-groups, and generate new cores for inhibitors of cyclin-dependent kinase 2 (CDK2). Using this approach, we explored >300 000 ideas, performed >5000 FEP simulations, and identified >100 ligands with a predicted IC50 < 100 nM, including four unique cores. To our knowledge, this is the largest set of FEP calculations disclosed in the literature to date. The rapid turnaround time, and scale of chemical exploration, suggests that this is a useful approach to accelerate the discovery of novel chemical matter in drug discovery campaigns.


Assuntos
Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Descoberta de Drogas , Aprendizado de Máquina , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Quinase 2 Dependente de Ciclina/metabolismo , Desenho de Fármacos , Descoberta de Drogas/métodos , Humanos , Modelos Moleculares , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Termodinâmica
13.
Acc Chem Res ; 50(7): 1625-1632, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28677954

RESUMO

A principal goal of drug discovery project is to design molecules that can tightly and selectively bind to the target protein receptor. Accurate prediction of protein-ligand binding free energies is therefore of central importance in computational chemistry and computer aided drug design. Multiple recent improvements in computing power, classical force field accuracy, enhanced sampling methods, and simulation setup have enabled accurate and reliable calculations of protein-ligands binding free energies, and position free energy calculations to play a guiding role in small molecule drug discovery. In this Account, we outline the relevant methodological advances, including the REST2 (Replica Exchange with Solute Temperting) enhanced sampling, the incorporation of REST2 sampling with convential FEP (Free Energy Perturbation) through FEP/REST, the OPLS3 force field, and the advanced simulation setup that constitute our FEP+ approach, followed by the presentation of extensive comparisons with experiment, demonstrating sufficient accuracy in potency prediction (better than 1 kcal/mol) to substantially impact lead optimization campaigns. The limitations of the current FEP+ implementation and best practices in drug discovery applications are also discussed followed by the future methodology development plans to address those limitations. We then report results from a recent drug discovery project, in which several thousand FEP+ calculations were successfully deployed to simultaneously optimize potency, selectivity, and solubility, illustrating the power of the approach to solve challenging drug design problems. The capabilities of free energy calculations to accurately predict potency and selectivity have led to the advance of ongoing drug discovery projects, in challenging situations where alternative approaches would have great difficulties. The ability to effectively carry out projects evaluating tens of thousands, or hundreds of thousands, of proposed drug candidates, is potentially transformative in enabling hard to drug targets to be attacked, and in facilitating the development of superior compounds, in various dimensions, for a wide range of targets. More effective integration of FEP+ calculations into the drug discovery process will ensure that the results are deployed in an optimal fashion for yielding the best possible compounds entering the clinic; this is where the greatest payoff is in the exploitation of computer driven design capabilities. A key conclusion from the work described is the surprisingly robust and accurate results that are attainable within the conventional classical simulation, fixed charge paradigm. No doubt there are individual cases that would benefit from a more sophisticated energy model or dynamical treatment, and properties other than protein-ligand binding energies may be more sensitive to these approximations. We conclude that an inflection point in the ability of MD simulations to impact drug discovery has now been attained, due to the confluence of hardware and software development along with the formulation of "good enough" theoretical methods and models.


Assuntos
Descoberta de Drogas , Simulação de Dinâmica Molecular
14.
J Am Chem Soc ; 137(7): 2695-703, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25625324

RESUMO

Designing tight-binding ligands is a primary objective of small-molecule drug discovery. Over the past few decades, free-energy calculations have benefited from improved force fields and sampling algorithms, as well as the advent of low-cost parallel computing. However, it has proven to be challenging to reliably achieve the level of accuracy that would be needed to guide lead optimization (∼5× in binding affinity) for a wide range of ligands and protein targets. Not surprisingly, widespread commercial application of free-energy simulations has been limited due to the lack of large-scale validation coupled with the technical challenges traditionally associated with running these types of calculations. Here, we report an approach that achieves an unprecedented level of accuracy across a broad range of target classes and ligands, with retrospective results encompassing 200 ligands and a wide variety of chemical perturbations, many of which involve significant changes in ligand chemical structures. In addition, we have applied the method in prospective drug discovery projects and found a significant improvement in the quality of the compounds synthesized that have been predicted to be potent. Compounds predicted to be potent by this approach have a substantial reduction in false positives relative to compounds synthesized on the basis of other computational or medicinal chemistry approaches. Furthermore, the results are consistent with those obtained from our retrospective studies, demonstrating the robustness and broad range of applicability of this approach, which can be used to drive decisions in lead optimization.


Assuntos
Biologia Computacional , Descoberta de Drogas , Proteínas/metabolismo , Desenho de Fármacos , Ligantes , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Proteínas/química , Termodinâmica
15.
J Chem Inf Model ; 55(11): 2411-20, 2015 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-26457994

RESUMO

Predicting protein-ligand binding free energies is a central aim of computational structure-based drug design (SBDD)--improved accuracy in binding free energy predictions could significantly reduce costs and accelerate project timelines in lead discovery and optimization. The recent development and validation of advanced free energy calculation methods represents a major step toward this goal. Accurately predicting the relative binding free energy changes of modifications to ligands is especially valuable in the field of fragment-based drug design, since fragment screens tend to deliver initial hits of low binding affinity that require multiple rounds of synthesis to gain the requisite potency for a project. In this study, we show that a free energy perturbation protocol, FEP+, which was previously validated on drug-like lead compounds, is suitable for the calculation of relative binding strengths of fragment-sized compounds as well. We study several pharmaceutically relevant targets with a total of more than 90 fragments and find that the FEP+ methodology, which uses explicit solvent molecular dynamics and physics-based scoring with no parameters adjusted, can accurately predict relative fragment binding affinities. The calculations afford R(2)-values on average greater than 0.5 compared to experimental data and RMS errors of ca. 1.1 kcal/mol overall, demonstrating significant improvements over the docking and MM-GBSA methods tested in this work and indicating that FEP+ has the requisite predictive power to impact fragment-based affinity optimization projects.


Assuntos
Desenho de Fármacos , Proteínas/metabolismo , Termodinâmica , Animais , Proteínas de Bactérias/metabolismo , Humanos , Ligantes , Camundongos , Simulação de Dinâmica Molecular , Ligação Proteica , Staphylococcus aureus/metabolismo
16.
J Pediatr Gastroenterol Nutr ; 61(1): 94-101, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25651489

RESUMO

OBJECTIVES: α-1-Antitrypsin (A1AT) deficiency is a common genetic disease with an unpredictable and highly variable course. The Childhood Liver Disease Research and Education Network is a National Institutes of Health, multicenter, longitudinal consortium studying pediatric liver diseases, with the objective of prospectively defining natural history and identifying disease modifiers. METHODS: Longitudinal, cohort study of A1AT patients' birth through 25 years diagnosed as having liver disease, type PIZZ or PISZ. Medical history, physical examination, laboratory, imaging, and standardized survey tool data were collected during the provision of standard of care. RESULTS: In the present report of the cohort at baseline, 269 subjects were enrolled between November 2008 and October 2012 (208 with their native livers and 61 postliver transplant). Subjects with mild disease (native livers and no portal hypertension [PHT]) compared to severe disease (with PHT or postliver transplant) were not different in age at presentation. A total of 57% of subjects with mild disease and 76% with severe disease were jaundiced at presentation (P = 0.0024). A total of 29% of subjects with native livers had PHT, but age at diagnosis and growth were not different between the no-PHT and PHT groups (P > 0.05). Subjects with native livers and PHT were more likely to have elevated bilirubin, ALT, AST, INR, and GGTP than the no-PHT group (P << 0.001), but overlap was large. Chemistries alone could not identify PHT. CONCLUSIONS: Many subjects with A1AT presenting with elevated liver tests and jaundice improve spontaneously. Subjects with PHT have few symptoms and normal growth. Longitudinal cohort follow-up will identify genetic and environmental disease modifiers.


Assuntos
Hipertensão Portal/etiologia , Fígado/patologia , Deficiência de alfa 1-Antitripsina/complicações , alfa 1-Antitripsina/sangue , Adolescente , Adulto , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Hipertensão Portal/sangue , Lactente , Recém-Nascido , Icterícia/epidemiologia , Fígado/metabolismo , Estudos Longitudinais , Masculino , Estudos Prospectivos , Adulto Jovem , Deficiência de alfa 1-Antitripsina/sangue
17.
J Chem Inf Model ; 54(7): 1932-40, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-24916536

RESUMO

Although many popular docking programs include a facility to account for covalent ligands, large-scale systematic docking validation studies of covalent inhibitors have been sparse. In this paper, we present the development and validation of a novel approach for docking and scoring covalent inhibitors, which consists of conventional noncovalent docking, heuristic formation of the covalent attachment point, and structural refinement of the protein-ligand complex. This approach combines the strengths of the docking program Glide and the protein structure modeling program Prime and does not require any parameter fitting for the study of additional covalent reaction types. We first test this method by predicting the native binding geometry of 38 covalently bound complexes. The average RMSD of the predicted poses is 1.52 Å, and 76% of test set inhibitors have an RMSD of less than 2.0 Å. In addition, the apparent affinity score constructed herein is tested on a virtual screening study and the characterization of the SAR properties of two different series of congeneric compounds with satisfactory success.


Assuntos
Descoberta de Drogas/métodos , Simulação de Acoplamento Molecular , Cristalografia por Raios X , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Ligantes , Conformação Proteica , Relação Estrutura-Atividade
18.
Proteins ; 81(9): 1509-26, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23468227

RESUMO

In our previous work, we proposed that desolvation and resolvation of the binding sites of proteins can serve as the slowest steps during ligand association and dissociation, respectively, and tested this hypothesis on two protein-ligand systems with known binding kinetics behavior. In the present work, we test this hypothesis on another kinetically-determined protein-ligand system-that of p38α and eight Type II BIRB 796 inhibitor analogs. The kon values among the inhibitor analogs are narrowly distributed (104 ≤ kon ≤ 105 M⁻¹ s⁻¹), suggesting a common rate-determining step, whereas the koff values are widely distributed (10⁻¹ ≤ koff ≤ 10⁻6 s⁻¹), suggesting a spectrum of rate-determining steps. We calculated the solvation properties of the DFG-out protein conformation using an explicit solvent molecular dynamics simulation and thermodynamic analysis method implemented in WaterMap to predict the enthalpic and entropic costs of water transfer to and from bulk solvent incurred upon association and dissociation of each inhibitor. The results suggest that the rate-determining step for association consists of the transfer of a common set of enthalpically favorable solvating water molecules from the binding site to bulk solvent. The rate-determining step for inhibitor dissociation consists of the transfer of water from bulk solvent to specific binding site positions that are unfavorably solvated in the apo protein, and evacuated during ligand association. Different sets of unfavorable solvation are evacuated by each ligand, and the observed dissociation barriers are qualitatively consistent with the calculated solvation free energies of those sets.


Assuntos
Proteína Quinase 14 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 14 Ativada por Mitógeno/química , Inibidores de Proteínas Quinases/química , Água/química , Sítios de Ligação , Cinética , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Modelos Químicos , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases/metabolismo , Termodinâmica
19.
J Comput Aided Mol Des ; 27(9): 755-70, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24072356

RESUMO

Alchemical free energy calculations hold increasing promise as an aid to drug discovery efforts. However, applications of these techniques in discovery projects have been relatively few, partly because of the difficulty of planning and setting up calculations. Here, we introduce lead optimization mapper, LOMAP, an automated algorithm to plan efficient relative free energy calculations between potential ligands within a substantial library of perhaps hundreds of compounds. In this approach, ligands are first grouped by structural similarity primarily based on the size of a (loosely defined) maximal common substructure, and then calculations are planned within and between sets of structurally related compounds. An emphasis is placed on ensuring that relative free energies can be obtained between any pair of compounds without combining the results of too many different relative free energy calculations (to avoid accumulation of error) and by providing some redundancy to allow for the possibility of error and consistency checking and provide some insight into when results can be expected to be unreliable. The algorithm is discussed in detail and a Python implementation, based on both Schrödinger's and OpenEye's APIs, has been made available freely under the BSD license.


Assuntos
Algoritmos , Desenho de Fármacos , Inibidores Enzimáticos/química , Software , Automação , Sítios de Ligação , Descoberta de Drogas , Entropia , Inibidores Enzimáticos/farmacologia , Fator Xa/metabolismo , Inibidores do Fator Xa , Humanos , Ligantes , Modelos Químicos , Simulação de Dinâmica Molecular , Termodinâmica , Tripsina/química , Tripsina/metabolismo
20.
J Chem Theory Comput ; 19(11): 3080-3090, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37219932

RESUMO

Structure-based drug design frequently operates under the assumption that a single holo structure is relevant. However, a large number of crystallographic examples clearly show that multiple conformations are possible. In those cases, the protein reorganization free energy must be known to accurately predict binding free energies for ligands. Only then can the energetic preference among these multiple protein conformations be utilized to design ligands with stronger binding potency and selectivity. Here, we present a computational method to quantify these protein reorganization free energies. We test it on two retrospective drug design cases, Abl kinase and HSP90, and illustrate how alternative holo conformations can be derisked and lead to large boosts in affinity. This method will allow computer-aided drug design to better support complex protein targets.


Assuntos
Desenho de Fármacos , Proteínas de Choque Térmico HSP90 , Ligantes , Estudos Retrospectivos , Conformação Proteica , Ligação Proteica , Sítios de Ligação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA