Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochemistry ; 58(43): 4337-4342, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31589416

RESUMO

In intravacuolar pathogens, iron is essential for growth and virulence. In Legionella pneumophila, a putative transmembrane protein inserted on the surface of the host pathogen-containing vacuole, IroT/MavN, facilitates intravacuolar iron acquisition from the host by an unknown mechanism, bypassing the problem of Fe(III) insolubility and mobilization. We developed a platform for purification and reconstitution of IroT in artificial lipid bilayer vesicles (proteoliposomes). By encapsulating the fluorescent reporter probe Fluozin-3, we reveal, by real-time metal transport assays, that IroT is a high-affinity iron transporter selective for Fe(II) over other essential transition metals. Mutational analysis reveals important residues in the transmembrane helices, soluble domains, and loops important for substrate recognition and translocation. The work establishes the substrate transport properties in a novel transporter family important for iron acquisition at the host-pathogen intravacuolar interface and provides chemical tools for a comparative investigation of the translocation properties in other iron transporter families.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Ferro/metabolismo , Legionella pneumophila/química , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/genética , Corantes Fluorescentes , Glicolipídeos/química , Transporte de Íons , Cinética , Mutação , Compostos Policíclicos , Ligação Proteica , Lipossomas Unilamelares/química
2.
Methods Mol Biol ; 2839: 77-97, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39008249

RESUMO

Transmembrane transition metal transporter proteins are central gatekeepers in selectively controlling vectorial metal cargo uptake and extrusion across cellular membranes in all living organisms, thus playing key roles in essential and toxic metal homeostasis. Biochemical characterization of transporter-mediated translocation events and transport kinetics of redox-active metals, such as iron and copper, is challenged by the complexity in generating reconstituted systems in which vectorial metal transport can be studied in real time. We present fluorescence-based proteoliposome methods to monitor redox-active metal transmembrane translocation upon reconstitution of purified metal transporters in artificial lipid bilayers. By encapsulating turn-on/-off iron or copper-dependent sensors in the proteoliposome lumen and conducting real-time transport assays using small unilamellar vesicles (SUVs), in which selected purified Fe(II) and Cu(I) transmembrane importer and exporter proteins have been reconstituted, we provide a platform to monitor metal translocation events across lipid bilayers in real time. The strategy is modular and expandable toward the study of different transporter families featuring diverse metal substrate selectivity and promiscuity.


Assuntos
Bicamadas Lipídicas , Oxirredução , Proteolipídeos , Proteolipídeos/metabolismo , Proteolipídeos/química , Bicamadas Lipídicas/metabolismo , Bicamadas Lipídicas/química , Cobre/metabolismo , Cobre/química , Ferro/metabolismo , Metais/metabolismo , Metais/química , Transporte Biológico , Lipossomas Unilamelares/metabolismo , Lipossomas Unilamelares/química
3.
Chem Sci ; 14(22): 6059-6078, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37293658

RESUMO

Transmembrane P1B-type ATPase pumps catalyze the extrusion of transition metal ions across cellular lipid membranes to maintain essential cellular metal homeostasis and detoxify toxic metals. Zn(ii)-pumps of the P1B-2-type subclass, in addition to Zn2+, select diverse metals (Pb2+, Cd2+ and Hg2+) at their transmembrane binding site and feature promiscuous metal-dependent ATP hydrolysis in the presence of these metals. Yet, a comprehensive understanding of the transport of these metals, their relative translocation rates, and transport mechanism remain elusive. We developed a platform for the characterization of primary-active Zn(ii)-pumps in proteoliposomes to study metal selectivity, translocation events and transport mechanism in real-time, employing a "multi-probe" approach with fluorescent sensors responsive to diverse stimuli (metals, pH and membrane potential). Together with atomic-resolution investigation of cargo selection by X-ray absorption spectroscopy (XAS), we demonstrate that Zn(ii)-pumps are electrogenic uniporters that preserve the transport mechanism with 1st-, 2nd- and 3rd-row transition metal substrates. Promiscuous coordination plasticity, guarantees diverse, yet defined, cargo selectivity coupled to their translocation.

4.
Nat Commun ; 13(1): 5121, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36045128

RESUMO

Copper is essential for living cells, yet toxic at elevated concentrations. Class 1B P-type (P1B-) ATPases are present in all kingdoms of life, facilitating cellular export of transition metals including copper. P-type ATPases follow an alternating access mechanism, with inward-facing E1 and outward-facing E2 conformations. Nevertheless, no structural information on E1 states is available for P1B-ATPases, hampering mechanistic understanding. Here, we present structures that reach 2.7 Å resolution of a copper-specific P1B-ATPase in an E1 conformation, with complementing data and analyses. Our efforts reveal a domain arrangement that generates space for interaction with ion donating chaperones, and suggest a direct Cu+ transfer to the transmembrane core. A methionine serves a key role by assisting the release of the chaperone-bound ion and forming a cargo entry site together with the cysteines of the CPC signature motif. Collectively, the findings provide insights into P1B-mediated transport, likely applicable also to human P1B-members.


Assuntos
ATPases Transportadoras de Cobre , Cobre , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Transporte Biológico , Cobre/química , Cobre/metabolismo , ATPases Transportadoras de Cobre/química , ATPases Transportadoras de Cobre/metabolismo , Humanos , Chaperonas Moleculares/metabolismo
5.
Nat Commun ; 12(1): 2202, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33850135

RESUMO

Artificial native-like lipid bilayer systems constructed from phospholipids assembling into unilamellar liposomes allow the reconstitution of detergent-solubilized transmembrane proteins into supramolecular lipid-protein assemblies called proteoliposomes, which mimic cellular membranes. Stabilization of these complexes remains challenging because of their chemical composition, the hydrophobicity and structural instability of membrane proteins, and the lability of interactions between protein, detergent, and lipids within micelles and lipid bilayers. In this work we demonstrate that metastable lipid, protein-detergent, and protein-lipid supramolecular complexes can be successfully generated and immobilized within zeolitic-imidazole framework (ZIF) to enhance their stability against chemical and physical stressors. Upon immobilization in ZIF bio-composites, blank liposomes, and model transmembrane metal transporters in detergent micelles or embedded in proteoliposomes resist elevated temperatures, exposure to chemical denaturants, aging, and mechanical stresses. Extensive morphological and functional characterization of the assemblies upon exfoliation reveal that all these complexes encapsulated within the framework maintain their native morphology, structure, and activity, which is otherwise lost rapidly without immobilization.


Assuntos
Detergentes/química , Exoesqueleto Energizado , Imobilização/métodos , Bicamadas Lipídicas/química , Proteínas de Membrana/química , Membrana Celular , ATPases Transportadoras de Cobre , Proteínas de Escherichia coli , Cinética , Bicamadas Lipídicas/metabolismo , Proteínas de Membrana/metabolismo , Micelas , Fosfolipídeos , Proteolipídeos , Espalhamento de Radiação , Lipossomas Unilamelares , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA