Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Environ Health Res ; : 1-12, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700266

RESUMO

Bisphenol A (BPA) is a chemical compound extensively employed in plastic manufacturing, and this pollutant has been detected in diverse aquatic organisms, notably bivalves. In order to comprehend the ecological and toxicological consequences of BPA Bisphenol A in these organisms, it is essential to examine the physiological and biochemical effects and identify areas where our understanding is lacking. This knowledge is crucial for determining the environn ental threat posed by bisphenol A and assisting decision-makers in establishing the appropriate priorities. This investigation aimed to assess the impact of BPA on the biochemical and physiological parameters of the freshwater mussel Potomida littoralis. In a laboratory setting, mussels were subjected to two different levels of BPA (20 and 100 µg/L) for a duration of 21 days. Filtration rate was calculated from the clearance of neutral red, fed to mussels at different BPA concentrations. The mussel's filtration rate capacity declined as BPA exposure intensified, potentially due to the mussel's attempt to close its valves and minimize BPA absorption, thus preventing cellular damage. In the digestive gland tissue, key antioxidant and detoxification defenses, including catalase (CAT) activity, glutathione-S-transferase (GST) activity, and levels of H2O2 and glutathione (GSH), were activated, particularly at the 100 µg/L BPA concentration. This activation helped protect against lipid damage at higher BPA concentrations. This study underscores the significance of preventing and regulating BPA release into the environment to avert detrimental consequences for aquatic ecosystems.

2.
Org Biomol Chem ; 17(24): 5916-5919, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31149701

RESUMO

Metal-catalysed ortho-directed C-H functionalization usually faces selectivity issues in the competition between mono- and disubstitution processes. We report herein the ruthenium-catalysed N-directed C-H monoarylation of arylpyrazoles with a selectivity of up to 96% or that generally reaches values above 80%. This selectivity is an effect of solvent-free conditions associated with sulfonate reagents, in the absence of frequently used acidic additives.

3.
Dalton Trans ; 53(25): 10737-10743, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38872593

RESUMO

The synthetic scope of 3-arylated tetrazo[1,2-b]indazoles is reported based on a Pd-catalyzed Liebeskind-Srogl cross-coupling reaction followed by an N-cyclisation process. The reactivity of the nitrogen atoms was used to further diversify these N-rich polyaromatic tetrazo[1,2-b]indazoles in a panel of reactions (protonation, selective oxidation, metallations). Selective ortho-C-H activation/functionalization on the heterocycle was also demonstrated with three transition metals (TM = Pd, Ir and Rh). The effects of all these molecular engineering strategies, particularly the N-modifications, on the optical and redox properties of the 3-arylated tetrazoindazoles were studied experimentally and theoretically. This study highlights the diversity of molecular structures and electronic properties offered by the tetrazo[1,2-b]indazole platform.

4.
RSC Adv ; 12(47): 30691-30695, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36337962

RESUMO

A general palladium-catalysed selective C-H halogenation reaction is reported, which was successfully achieved for a large variety of functionalized aromatic rings incorporating diverse N-directing groups. By using simple alkali halides of MX type as the nucleophilic reagent source (M = Li, Na, K, Cs and X = I, Br and Cl), and phenyliodanediacetate oxidant, clean C-H-iodination, bromination and chlorination reactions were performed. This general protocol of selective ortho-monohalogenation, which complements but contrasts with the classical methods using electrophilic reagents, is achievable in a short time (30 min) with microwave irradiation assistance. The reaction was extended to substrates bearing N-directing pyridine, pyrimidine, pyrazole, oxazoline, naphtho[1,2-d]thiazole, and azobenzene groups. Notably, the topical and selectivity-challenging s-tetrazine, as a nitrogen-rich heteroaromatic, was successfully halogenated by this protocol.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA