Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(2): 539-42, 2015 Feb.
Artigo em Zh | MEDLINE | ID: mdl-25970928

RESUMO

Surfaces of natural sand particles were modified with (3-chloropropyl) trichlorosilane, so that bridging groups were introduced on the surfaces of natural sand particles; By grafting polyacrylonitrile onto the modified surfaces of the natural sand particles, a novelpolyacrylonitrile/natural sand composite material was prepared from the acrylonitrile, the azobisisobutyronitrile, the divinylbenzene and the modified natural sand particles, which are as functional monomer, initiator, either skeleton monomer or cross-linking agent and carrier respectively; the composite materials were characterized by using infrared spectroscopy and scanning electron microscopy; On the FTIR spectrum, the main characteristic peaks of various functional groups including nitrile, benzene ring, and silicon hydroxyl, which were from functional monomer, cross-linking agent and carrier respectively, were observed. On the SEM, two different cross section morphologies having different density which were from acrylonitrile and modified sand particles were observed; This proved that the polyacrylonitrile was decorated on modified sand particles during our preparation process. After preparing the composite materials, micro-column of separation and preconcentration was prepared using the composite materials as filler; the adsorption of some toxic heavy metal ions onto the composite materials was observed by flame atomic absorption spectrometry (FAAS); The results show that the adsorption of Pb2+ onto the composite materials was more stronger than the absorption of other toxic heavy metal ions, therefore, in this paper, the adsorption of Pb2+ onto the composite materials was mainly studied, at room temperature, when pH and flow rate of solution were 5. 4 and 4 mL x min(-1) respectively, the trace Pb(II) ions could be quantitatively adsorbed onto the composite materials; the maximum adsorption capacity of Pb(II) on the composite materials can reach 62.9 mg x g(-1). The column was eluted by 0.5 mol x L(-1) HCl and recovery of Pb(II) was more than 96%.

2.
Chemosphere ; 313: 137439, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36460154

RESUMO

As the "vector" of heavy metals in the aquatic environment, microplastics (MPs) have a great influence on the migration and transformation of heavy metals. In this study, the adsorption of polypropylene (PP), polyethylene (PE) and polystyrene (PS) on two models of heavy metals after UV aging and environmental variables (ionic coexistence, pH, salinity, and fulvic acid) were comprehensively explored on adsorption. The results show that new oxidation functional groups are formed and their hydrophilicity is enhanced after MPs aging. As a result, the adsorption experiments showed that the adsorption of contaminants by UV aged MPs exceeds that of pristine MPs. The adsorption amounts of Pb(II) and Cu(II) by PP, PE and PS increased by 1.45, 1.46, 1.25 and 1.63, 1.39, 1.22 times, respectively. Adsorption kinetic data were more consistent with the pseudo-second-order kinetic model, proving chemisorption to be the mechanism governing the interaction between metal ions and MPs. The Freundlich model could accurately predict the heavy metal adsorption isotherms on MPs, showing that non-homogeneous multilayer adsorption dominates the process. In Pb(II)-Cu(II) binary composite system, metal ion adsorption capacity on MPs is less than that of the single system adsorption capacity, which proves that there is a specific inhibitory effect between coexisting ions. Additionally, external factors like pH, salinity, and fulvic acid content have a big impact on adsorption behavior. According to mechanism analysis, the adsorption process mainly relies on electrostatic interaction, surface complexation, and van der Waals force.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Microplásticos/química , Plásticos/química , Chumbo , Adsorção , Poluentes Químicos da Água/análise , Metais Pesados/química , Poliestirenos/química , Polietileno , Polipropilenos , Água , Íons
3.
Guang Pu Xue Yu Guang Pu Fen Xi ; 32(6): 1677-80, 2012 Jun.
Artigo em Zh | MEDLINE | ID: mdl-22870665

RESUMO

The crosslinked polymer beads was synthesized by free emulsion polymerization using maleic anhydride and styrene. The chemical structure and morphology of the polymer beads were analyzed using FTIR and SEM. And the dynamic adsorption properties of beads for Pb(II) was studied by atomic adsorption spectrometry(AAS). The relevant factors influencing adsorption and desorption were investigated. The results showed that in the solution at pH 5, when the sample flow rate was 1.0 mL x min(-1), the adsorption rate of Pb(II) reached more than 95%. Using 1 moL x L(-1) nitrate acid as the best eluant the absorbates were desorbed at the flow rate of 0.5 mL x min(-1), the recovery of Pb(II) reached more than 99%. Under the optimum conditions, the adsorption capacity could be up to 26.5 mg x g(-1), the detection limits(3sigma11) were 2.1 microg x L(-1) and relative standard deviation (RSD) was 2.5%. The method has been applied to the determination of trace lead in water samples with satisfactory results.

4.
Nanomaterials (Basel) ; 12(6)2022 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-35335756

RESUMO

Metal effects on the gas sensing behavior of metal complexes of 5,10,15,20-tetrakis(4-hydroxyphenyl)porphyrin (THPP) thin film was investigated in terms of detecting NO2 gas by the planar optical waveguide. For this purpose, several THPP and metal complexes were synthesized with different central metal ions: Co(II), Ni(II), Cu(II), and Zn(II). Planar optical gas sensors were fabricated with the metalloporphyrins deposited on K+ ion-exchanged soda-lime glass substrate with the spin coating method serving as host matrices for gas interaction. All of the THPP complex's films were fully characterized by UV-Vis, IR and XPS spectroscopy, and the laser light source wavelength was selected at 520 and 670 nm. The results of the planar optical waveguide sensor show that the Zn-THPP complex exhibits the strongest response with the lowest detectable gas concentration of NO2 gas for both 520 nm and 670 nm. The Ni-THPP and Co-THPP complexes display good efficiency in the detection of NO2, while, on the other hand, Cu-THPP shows a very low interaction with NO2 gas, with only 50 ppm and 200 ppm detectable gas concentration for 520 nm and 670 nm, respectively. In addition, molecular dynamic simulations and quantum mechanical calculations were performed, proving to be coherent with the experimental results.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 244: 118863, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-32882653

RESUMO

Optical waveguide gas sensor with bromocresol purple (BCP) nano-film (70-80 nm) composited with silicone deposited on surface of K+-ion exchanged glass slide was fabricated and applied to detect amine gases released during mutton spoilage to test mutton freshness with the help of laser light (632 m). Gas sensing measurements (output light intensity vs. time) proved its high selectivity and good sensitivity (0.01 ppm) toward amines among volatile organic compounds. The optimal fabricating condition (2600 rpm, 0.10% BCP, 5.17% silicone) was selected experimentally, displaying 1 s and 12 s response-recovery time toward gases released from mutton samples stored at 5 °C and 25 °C respectively. The sensing mechanism was explained by combination and competition of diffusion-reaction, considering deprotonating reaction of bromocresol purple molecules and molecular size of analyte gases in diffusion process. UV-vis spectroscopy was used to select the specific wavelength of laser light source in optical waveguide performance and to detect the total volatile basic nitrogen contents in mutton sample to confirm the practicability of as-prepared optical waveguide sensor in detecting mutton freshness. The fabricated sensor is able to detect 7.2 mg/100 g gases released from mutton decomposition, providing a simple, fast, and cheap method to detect meat freshness.


Assuntos
Púrpura de Bromocresol , Luz , Gases , Lasers , Carne/análise
6.
Nanomaterials (Basel) ; 11(7)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206623

RESUMO

The sensing behavior of a thin film composed of metal-free 5, 10, 15, 20-tetrakis (p-hydroxy phenyl) porphyrin and zinc phthalocyanine complex towards m-xylene, styrene, and HCl vapors in a homemade planar optical waveguide (POWG), was studied at room temperature. The thin film was deposited on the surface of potassium ion-exchanged glass substrate, using vacuum spin-coating method, and a semiconductor laser light (532 nm) as the guiding light. Opto-chemical changes of the film exposing with hydrochloric gas, m-xylene, and styrene vapor, were analyzed firstly with UV-Vis spectroscopy. The fabricated POWG shows good correlation between gas exposure response and absorbance change within the gas concentration range 10-1500 ppm. The limit of detection calculated from the logarithmic calibration curve was proved to be 11.47, 21.08, and 14.07 ppm, for HCl gas, m-xylene, and styrene vapors, respectively. It is interesting to find that the film can be recovered to the initial state with trimethylamine vapors after m-xylene, styrene exposures as well as HCl exposure. The gas-film interaction mechanism was discussed considering protonation and π-π stacking with planar aromatic analyte molecules.

7.
Anal Sci ; 34(12): 1385-1391, 2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30175726

RESUMO

In this work, sodium dodecyl benzene sulfonate (SDBS) was used as a dispersing agent; a WO3 nanoparticle suspension was used as a sensing material. The SDBS-WO3 thin film/Sn-doped glass optical waveguide sensor element was prepared by spin coating. The sensing material was characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and field-emission scanning electron microscopy (FESEM). The gas-sensing characteristics of the fabricated sensors were studied at room temperature for various gases. The experimental results indicate that the sensor exhibited a high selective response toward SO2 and H2S and a low detection limit of 10 ppb to SO2 and H2S. The response/recovery times for SO2 and H2S were 2/23 and 2/18 s. However, during an electrochemical gas-sensing performance test of the SDBS-WO3 film at room temperature, the results indicated that the trend of the variation in resistance was consistent with the variation in the output light.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA