Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Biomed Eng Online ; 22(1): 76, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37525193

RESUMO

BACKGROUND: In the future, extended reality technology will be widely used. People will be led to utilize virtual reality (VR) and augmented reality (AR) technologies in their daily lives, hobbies, numerous types of entertainment, and employment. Medical augmented reality has evolved with applications ranging from medical education to picture-guided surgery. Moreover, a bulk of research is focused on clinical applications, with the majority of research devoted to surgery or intervention, followed by rehabilitation and treatment applications. Numerous studies have also looked into the use of augmented reality in medical education and training. METHODS: Using the databases Semantic Scholar, Web of Science, Scopus, IEEE Xplore, and ScienceDirect, a scoping review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. To find other articles, a manual search was also carried out in Google Scholar. This study presents studies carried out over the previous 14 years (from 2009 to 2023) in detail. We classify this area of study into the following categories: (1) AR and VR in surgery, which is presented in the following subsections: subsection A: MR in neurosurgery; subsection B: spine surgery; subsection C: oral and maxillofacial surgery; and subsection D: AR-enhanced human-robot interaction; (2) AR and VR in medical education presented in the following subsections; subsection A: medical training; subsection B: schools and curriculum; subsection C: XR in Biomedicine; (3) AR and VR for rehabilitation presented in the following subsections; subsection A: stroke rehabilitation during COVID-19; subsection B: cancer and VR, and (4) Millimeter-wave and MIMO systems for AR and VR. RESULTS: In total, 77 publications were selected based on the inclusion criteria. Four distinct AR and/or VR applications groups could be differentiated: AR and VR in surgery (N = 21), VR and AR in Medical Education (N = 30), AR and VR for Rehabilitation (N = 15), and Millimeter-Wave and MIMO Systems for AR and VR (N = 7), where N is number of cited studies. We found that the majority of research is devoted to medical training and education, with surgical or interventional applications coming in second. The research is mostly focused on rehabilitation, therapy, and clinical applications. Moreover, the application of XR in MIMO has been the subject of numerous research. CONCLUSION: Examples of these diverse fields of applications are displayed in this review as follows: (1) augmented reality and virtual reality in surgery; (2) augmented reality and virtual reality in medical education; (3) augmented reality and virtual reality for rehabilitation; and (4) millimeter-wave and MIMO systems for augmented reality and virtual reality.


Assuntos
Realidade Aumentada , COVID-19 , Reabilitação do Acidente Vascular Cerebral , Realidade Virtual , Humanos , Engenharia Biomédica
2.
Sensors (Basel) ; 19(20)2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31652552

RESUMO

Automatic vehicle detection and counting are considered vital in improving traffic control and management. This work presents an effective algorithm for vehicle detection and counting in complex traffic scenes by combining both convolution neural network (CNN) and the optical flow feature tracking-based methods. In this algorithm, both the detection and tracking procedures have been linked together to get robust feature points that are updated regularly every fixed number of frames. The proposed algorithm detects moving vehicles based on a background subtraction method using CNN. Then, the vehicle's robust features are refined and clustered by motion feature points analysis using a combined technique between KLT tracker and K-means clustering. Finally, an efficient strategy is presented using the detected and tracked points information to assign each vehicle label with its corresponding one in the vehicle's trajectories and truly counted it. The proposed method is evaluated on videos representing challenging environments, and the experimental results showed an average detection and counting precision of 96.3% and 96.8%, respectively, which outperforms other existing approaches.

3.
BioData Min ; 17(1): 17, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890729

RESUMO

Retained surgical items (RSIs) pose significant risks to patients and healthcare professionals, prompting extensive efforts to reduce their incidence. RSIs are objects inadvertently left within patients' bodies after surgery, which can lead to severe consequences such as infections and death. The repercussions highlight the critical need to address this issue. Machine learning (ML) and deep learning (DL) have displayed considerable potential for enhancing the prevention of RSIs through heightened precision and decreased reliance on human involvement. ML techniques are finding an expanding number of applications in medicine, ranging from automated imaging analysis to diagnosis. DL has enabled substantial advances in the prediction capabilities of computers by combining the availability of massive volumes of data with extremely effective learning algorithms. This paper reviews and evaluates recently published articles on the application of ML and DL in RSIs prevention and diagnosis, stressing the need for a multi-layered approach that leverages each method's strengths to mitigate RSI risks. It highlights the key findings, advantages, and limitations of the different techniques used. Extensive datasets for training ML and DL models could enhance RSI detection systems. This paper also discusses the various datasets used by researchers for training the models. In addition, future directions for improving these technologies for RSI diagnosis and prevention are considered. By merging ML and DL with current procedures, it is conceivable to substantially minimize RSIs, enhance patient safety, and elevate surgical care standards.

4.
Med Eng Phys ; 24(3): 185-99, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12062177

RESUMO

This paper introduces an effective technique for the compression of one-dimensional signals using wavelet transforms. It is based on generating a binary stream of 1s and 0s that encodes the wavelet coefficients structure (i.e., encodes the locations of zero and nonzero coefficients). A new coding algorithm, similar to the run length encoding, has been developed for the compression of the binary stream. The compression performances of the technique are measured using compression ratio (CR) and percent root-mean square difference (PRD) measures. To assess the technique properly we have evaluated the effect of signal length, threshold levels selection and wavelet filters on the quality of the reconstructed signal. The effect of finite word length representation on the compression ratio and PRD is also discussed. The technique is tested for the compression of normal and abnormal electrocardiogram (ECG) signals. The performance parameters of the proposed coding algorithm are measured and compression ratios of 19:1 and 45:1 with PRDs of 1% and 2.8% are achieved, respectively. At the receiver end, the received signal is decoded and inverse transformed before being processed. Finally, the merits and demerits of the technique are discussed.


Assuntos
Algoritmos , Simulação por Computador , Armazenamento e Recuperação da Informação/métodos , Modelos Teóricos , Processamento de Sinais Assistido por Computador , Bases de Dados Factuais , Eletrocardiografia/métodos , Humanos , Tamanho da Amostra , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA