Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Proc Biol Sci ; 284(1860)2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28768889

RESUMO

The diversity of fishes on coral reefs is influenced by the evolution of feeding innovations. For instance, the evolution of an intramandibular jaw joint has aided shifts to corallivory in Chaetodon butterflyfishes following their Miocene colonization of coral reefs. Today, over half of all Chaetodon species consume coral, easily the largest concentration of corallivores in any reef fish family. In contrast with Chaetodon, other chaetodontids, including the long-jawed bannerfishes, remain less intimately associated with coral and mainly consume other invertebrate prey. Here, we test (i) if intramandibular joint (IMJ) evolution in Chaetodon has accelerated feeding morphological diversification, and (ii) if cranial and post-cranial traits were affected similarly. We measured 19 cranial functional morphological traits, gut length and body elongation for 33 Indo-Pacific species. Comparisons of Brownian motion rate parameters revealed that cranial diversification was about four times slower in Chaetodon butterflyfishes with the IMJ than in other chaetodontids. However, the rate of gut length evolution was significantly faster in Chaetodon, with no group-differences for body elongation. The contrasting patterns of cranial and post-cranial morphological evolution stress the importance of comprehensive datasets in ecomorphology. The IMJ appears to enhance coral feeding ability in Chaetodon and represents a design breakthrough that facilitates this trophic strategy. Meanwhile, variation in gut anatomy probably reflects diversity in how coral tissues are procured and assimilated. Bannerfishes, by contrast, retain a relatively unspecialized gut for processing invertebrate prey, but have evolved some of the most extreme cranial mechanical innovations among bony fishes for procuring elusive prey.


Assuntos
Evolução Biológica , Comportamento Alimentar , Mandíbula/anatomia & histologia , Perciformes/anatomia & histologia , Animais , Antozoários , Recifes de Corais , Perciformes/classificação , Crânio/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA