RESUMO
PURPOSE: Determine the dosimetric quality and the planning time reduction when utilizing a template-based automated planning application. METHODS: A software application integrated through the treatment planning system application programing interface, QuickPlan, was developed to facilitate automated planning using configurable templates for contouring, knowledge-based planning structure matching, field design, and algorithm settings. Validations are performed at various levels of the planning procedure and assist in the evaluation of readiness of the CT image, structure set, and plan layout for automated planning. QuickPlan is evaluated dosimetrically against 22 hippocampal-avoidance whole brain radiotherapy patients. The required times to treatment plan generation are compared for the validations set as well as 10 prospective patients whose plans have been automated by QuickPlan. RESULTS: The generations of 22 automated treatment plans are compared against a manual replanning using an identical process, resulting in dosimetric differences of minor clinical significance. The target dose to 2% volume and homogeneity index result in significantly decreased values for automated plans, whereas other dose metric evaluations are nonsignificant. The time to generate the treatment plans is reduced for all automated plans with a median difference of 9' 50â³ ± 4' 33â³. CONCLUSIONS: Template-based automated planning allows for reduced treatment planning time with consistent optimization structure creation, treatment field creation, plan optimization, and dose calculation with similar dosimetric quality. This process has potential expansion to numerous disease sites.
Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Estudos Prospectivos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Dosagem Radioterapêutica , SoftwareRESUMO
OBJECTIVE: For patients with surgically accessible solitary metastases or oligometastatic disease, treatment often involves resection followed by postoperative stereotactic radiosurgery (SRS). This strategy has several potential drawbacks, including irregular target delineation for SRS and potential tumor "seeding" away from the resection cavity during surgery. A neoadjuvant (preoperative) approach to radiation therapy avoids these limitations and offers improved patient convenience. This study assessed the efficacy of neoadjuvant SRS as a new treatment paradigm for patients with brain metastases. METHODS: A retrospective review was performed at a single institution to identify patients who had undergone neoadjuvant SRS (specifically, Gamma Knife radiosurgery) followed by resection of a brain metastasis. Kaplan-Meier survival and log-rank analyses were used to evaluate risks of progression and death. Assessments were made of local recurrence and leptomeningeal spread. Additionally, an analysis of the contemporary literature of postoperative and neoadjuvant SRS for metastatic disease was performed. RESULTS: Twenty-four patients who had undergone neoadjuvant SRS followed by resection of a brain metastasis were identified in the single-institution cohort. The median age was 64 years (range 32-84 years), and the median follow-up time was 16.5 months (range 1 month to 5.7 years). The median radiation dose was 17 Gy prescribed to the 50% isodose. Rates of local disease control were 100% at 6 months, 87.6% at 12 months, and 73.5% at 24 months. In 4 patients who had local treatment failure, salvage therapy included repeat resection, laser interstitial thermal therapy, or repeat SRS. One hundred thirty patients (including the current cohort) were identified in the literature who had been treated with neoadjuvant SRS prior to resection. Overall rates of local control at 1 year after neoadjuvant SRS treatment ranged from 49% to 91%, and rates of leptomeningeal dissemination from 0% to 16%. In comparison, rates of local control 1 year after postoperative SRS ranged from 27% to 91%, with 7% to 28% developing leptomeningeal disease. CONCLUSIONS: Neoadjuvant SRS for the treatment of brain metastases is a novel approach that mitigates the shortcomings of postoperative SRS. While additional prospective studies are needed, the current study of 130 patients including the summary of 106 previously published cases supports the safety and potential efficacy of preoperative SRS with potential for improved outcomes compared with postoperative SRS.
Assuntos
Neoplasias Encefálicas , Neoplasias Meníngeas , Radiocirurgia , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Radiocirurgia/efeitos adversos , Terapia Neoadjuvante/efeitos adversos , Neoplasias Encefálicas/cirurgia , Neoplasias Meníngeas/cirurgia , Terapia de Salvação , Estudos Retrospectivos , Resultado do TratamentoRESUMO
PURPOSE: Large language model (LLM) artificial intelligences may help physicians appeal insurer denials of prescribed medical services, a task that delays patient care and contributes to burnout. We evaluated LLM performance at this task for denials of radiotherapy services. METHODS: We evaluated generative pretrained transformer 3.5 (GPT-3.5; OpenAI, San Francisco, CA), GPT-4, GPT-4 with internet search functionality (GPT-4web), and GPT-3.5ft. The latter was developed by fine-tuning GPT-3.5 via an OpenAI application programming interface with 53 examples of appeal letters written by radiation oncologists. Twenty test prompts with simulated patient histories were programmatically presented to the LLMs, and output appeal letters were scored by three blinded radiation oncologists for language representation, clinical detail inclusion, clinical reasoning validity, literature citations, and overall readiness for insurer submission. RESULTS: Interobserver agreement between radiation oncologists' scores was moderate or better for all domains (Cohen's kappa coefficients: 0.41-0.91). GPT-3.5, GPT-4, and GPT-4web wrote letters that were on average linguistically clear, summarized provided clinical histories without confabulation, reasoned appropriately, and were scored useful to expedite the insurance appeal process. GPT-4 and GPT-4web letters demonstrated superior clinical reasoning and were readier for submission than GPT-3.5 letters (P < .001). Fine-tuning increased GPT-3.5ft confabulation and compromised performance compared with other LLMs across all domains (P < .001). All LLMs, including GPT-4web, were poor at supporting clinical assertions with existing, relevant, and appropriately cited primary literature. CONCLUSION: When prompted appropriately, three commercially available LLMs drafted letters that physicians deemed would expedite appealing insurer denials of radiotherapy services. LLMs may decrease this task's clerical workload on providers. However, LLM performance worsened when fine-tuned with a task-specific, small training data set.
Assuntos
Radioterapia , Humanos , Radioterapia/métodos , Inteligência Artificial , Radio-Oncologistas , Radioterapia (Especialidade)/métodosRESUMO
PURPOSE: We aimed to demonstrate the clinical feasibility and safety of simulation-free hippocampal avoidance whole brain radiation therapy (HA-WBRT) in a pilot study (National Clinical Trial 05096286). METHODS AND MATERIALS: Ten HA-WBRT candidates were enrolled for treatment on a commercially available computed tomography (CT)-guided linear accelerator with online adaptive capabilities. Planning structures were contoured on patient-specific diagnostic magnetic resonance imaging (MRI), which were registered to a CT of similar head shape, obtained from an atlas-based database (AB-CT). These patient-specific diagnostic MRI and AB-CT data sets were used for preplan calculation, using NRG-CC001 constraints. At first fraction, AB-CTs were used as primary data sets and deformed to patient-specific cone beam CTs (CBCT) to give patient-matched density information. Brain, ventricle, and brain stem contours were matched through rigid translation and rotation to the corresponding anatomy on CBCT. Lens, optic nerve, and brain contours were manually edited based on CBCT visualization. Preplans were then reoptimized through online adaptation to create final, simulation-free plans, which were used if they met all objectives. Workflow tasks were timed. In addition, patients underwent CT-simulation to create immobilization devices and for prospective dosimetric comparison of simulation-free and simulation-based plans. RESULTS: Median time from MRI importation to completion of "preplan" was 1 weekday (range, 1-4). Median on-table workflow duration was 41 minutes (range, 34-70). NRG-CC001 constraints were achieved by 90% of the simulation-free plans. One patient's simulation-free plan failed a planning target volume coverage objective (89% instead of 90% coverage); this was deemed acceptable for first-fraction delivery, with an offline replan used for subsequent fractions. Both simulation-free and simulation CT-based plans otherwise met constraints, without clinically meaningful differences. CONCLUSIONS: Simulation-free HA-WBRT using online adaptive radiation therapy is feasible, safe, and results in dosimetrically comparable treatment plans to simulation CT-based workflows while providing convenience and time savings for patients.
Assuntos
Neoplasias Encefálicas , Tomografia Computadorizada de Feixe Cônico , Irradiação Craniana , Estudos de Viabilidade , Hipocampo , Imageamento por Ressonância Magnética , Órgãos em Risco , Planejamento da Radioterapia Assistida por Computador , Radioterapia Guiada por Imagem , Humanos , Projetos Piloto , Planejamento da Radioterapia Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Hipocampo/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/diagnóstico por imagem , Irradiação Craniana/métodos , Órgãos em Risco/diagnóstico por imagem , Órgãos em Risco/efeitos da radiação , Radioterapia Guiada por Imagem/métodos , Tratamentos com Preservação do Órgão/métodos , MasculinoRESUMO
Background and Purpose: Hippocampal-avoidance whole brain radiotherapy (HA-WBRT) can be a time-consuming process compared to conventional whole brain techniques, thus potentially limiting widespread utilization. Therefore, we evaluated the in silico clinical feasibility, via dose-volume metrics and timing, by leveraging a computed tomography (CT)-based commercial adaptive radiotherapy (ART) platform and workflow in order to create and deliver patient-specific, simulation-free HA-WBRT. Materials and methods: Ten patients previously treated for central nervous system cancers with cone-beam computed tomography (CBCT) imaging were included in this study. The CBCT was the adaptive image-of-the-day to simulate first fraction on-board imaging. Initial contours defined on the MRI were rigidly matched to the CBCT. Online ART was used to create treatment plans at first fraction. Dose-volume metrics of these simulation-free plans were compared to standard-workflow HA-WBRT plans on each patient CT simulation dataset. Timing data for the adaptive planning sessions were recorded. Results: For all ten patients, simulation-free HA-WBRT plans were successfully created utilizing the online ART workflow and met all constraints. The median hippocampi D100% was 7.8 Gy (6.6-8.8 Gy) in the adaptive plan vs 8.1 Gy (7.7-8.4 Gy) in the standard workflow plan. All plans required adaptation at first fraction due to both a failing hippocampal constraint (6/10 adaptive fractions) and sub-optimal target coverage (6/10 adaptive fractions). Median time for the adaptive session was 45.2 min (34.0-53.8 min). Conclusions: Simulation-free HA-WBRT, with commercially available systems, was clinically feasible via plan-quality metrics and timing, in silico.
RESUMO
Purpose: Herein we report the clinical and dosimetric experience for patients with metastases treated with palliative simulation-free radiation therapy (SFRT) at a single institution. Methods and Materials: SFRT was performed at a single institution. Multiple fractionation regimens were used. Diagnostic imaging was used for treatment planning. Patient characteristics as well as planning and treatment time points were collected. A matched cohort of patients with conventional computed tomography simulation radiation therapy (CTRT) was acquired to evaluate for differences in planning and treatment time. SFRT dosimetry was evaluated to determine the fidelity of SFRT. Descriptive statistics were calculated on all variables and statistical significance was evaluated using the Wilcoxon signed rank test and t test methods. Results: Thirty sessions of SFRT were performed and matched with 30 sessions of CTRT. Seventy percent of SFRT and 63% of CTRT treatments were single fraction. The median time to plan generation was 0.88 days (0.19-1.47) for SFRT and 1.90 days (0.39-5.23) for CTRT (P = .02). The total treatment time was 41 minutes (28-64) for SFRT and 30 minutes (21-45) for CTRT (P = .02). In the SFRT courses, the maximum and mean deviations in the actual delivered dose from the approved plans for the maximum dose were 4.1% and 0.07%, respectively. All deliveries were within a 5% threshold and deemed clinically acceptable. Conclusions: Palliative SFRT is an emerging technique that allowed for a statistically significant lower time to plan generation and was dosimetrically acceptable. This benefit must be weighed against increased total treatment time for patients receiving SFRT compared with CTRT, and appropriate patient selection is critical.
RESUMO
Importance: Spine metastasis can be treated with high-dose radiation therapy with advanced delivery technology for long-term tumor and pain control. Objective: To assess whether patient-reported pain relief was improved with stereotactic radiosurgery (SRS) as compared with conventional external beam radiotherapy (cEBRT) for patients with 1 to 3 sites of vertebral metastases. Design, Setting, and Participants: In this randomized clinical trial, patients with 1 to 3 vertebral metastases were randomized 2:1 to the SRS or cEBRT groups. This NRG 0631 phase 3 study was performed as multi-institutional enrollment within NRG Oncology. Eligibility criteria included the following: (1) solitary vertebral metastasis, (2) 2 contiguous vertebral levels involved, or (3) maximum of 3 separate sites. Each site may involve up to 2 contiguous vertebral bodies. A total of 353 patients enrolled in the trial, and 339 patients were analyzed. This analysis includes data extracted on March 9, 2020. Interventions: Patients randomized to the SRS group were treated with a single dose of 16 or 18 Gy (to convert to rad, multiply by 100) given to the involved vertebral level(s) only, not including any additional spine levels. Patients assigned to cEBRT were treated with 8 Gy given to the involved vertebra plus 1 additional vertebra above and below. Main Outcomes and Measures: The primary end point was patient-reported pain response defined as at least a 3-point improvement on the Numerical Rating Pain Scale (NRPS) without worsening in pain at the secondary site(s) or the use of pain medication. Secondary end points included treatment-related toxic effects, quality of life, and long-term effects on vertebral bone and spinal cord. Results: A total of 339 patients (mean [SD] age of SRS group vs cEBRT group, respectively, 61.9 [13.1] years vs 63.7 [11.9] years; 114 [54.5%] male in SRS group vs 70 [53.8%] male in cEBRT group) were analyzed. The baseline mean (SD) pain score at the index vertebra was 6.06 (2.61) in the SRS group and 5.88 (2.41) in the cEBRT group. The primary end point of pain response at 3 months favored cEBRT (41.3% for SRS vs 60.5% for cEBRT; difference, -19 percentage points; 95% CI, -32.9 to -5.5; 1-sided P = .99; 2-sided P = .01). Zubrod score (a measure of performance status ranging from 0 to 4, with 0 being fully functional and asymptomatic, and 4 being bedridden) was the significant factor influencing pain response. There were no differences in the proportion of acute or late adverse effects. Vertebral compression fracture at 24 months was 19.5% with SRS and 21.6% with cEBRT (P = .59). There were no spinal cord complications reported at 24 months. Conclusions and Relevance: In this randomized clinical trial, superiority of SRS for the primary end point of patient-reported pain response at 3 months was not found, and there were no spinal cord complications at 2 years after SRS. This finding may inform further investigation of using spine radiosurgery in the setting of oligometastases, where durability of cancer control is essential. Trial Registration: ClinicalTrials.gov Identifier: NCT00922974.
Assuntos
Fraturas por Compressão , Radiocirurgia , Fraturas da Coluna Vertebral , Humanos , Masculino , Adolescente , Feminino , Radiocirurgia/efeitos adversos , Radiocirurgia/métodos , Fraturas da Coluna Vertebral/etiologia , Qualidade de Vida , Fraturas por Compressão/etiologia , Coluna Vertebral/cirurgia , Dor/etiologiaRESUMO
Purpose: Hippocampal volume (HV) is an established predicting factor for neurocognitive function (NCF) in neurodegenerative disease. Whether the same phenomenon exists with hippocampal-avoidant whole brain radiation therapy is not known; therefore, we assessed the association of baseline HV with NCF among patients enrolled on RTOG 0933. Methods and Materials: Hippocampal volume and total brain volume were calculated from the radiation therapy plan. Hippocampal volume was correlated with baseline and 4-month NCF scores (Hopkins Verbal Learning Test-Revised [HVLT-R] Total Recall [TR], Immediate Recognition, and Delayed Recall [DR]) using Pearson correlation. Deterioration in NCF was defined per the primary endpoint of RTOG 0933(mean 4-month relative decline in HVLT-R DR). Comparisons between patients with deteriorated and nondeteriorated NCF were made using the Wilcoxon test. Results: Forty-two patients were evaluable. The median age was 56.5 years (range, 28-83 years), and 81% had a class II recursive partitioning analysis. The median total, right, and left HVs were 5.4 cm3 (range, 1.9-7.4 cm3), 2.8 cm3 (range, 0.9-4.0 cm3), and 2.7 cm3 (range, 1.0-3.7 cm3), respectively. The median total brain volume was 1343 cm3 (range, 1120.5-1738.8 cm3). For all measures of corrected HV, increasing HV was associated with higher baseline HVLT-R TR and DR scores (ρ: range, 0.35-0.40; P-value range, .009-.024) and 4-month TR and DR scores (ρ: range, 0.29-0.40; P-value range, .009-.04), with the exception of right HV and 4-month DR scores (ρ: 0.29; P = .059). There was no significant association between HV and NCF change between baseline and 4 months. Fourteen patients (33.3%) developed NCF deterioration per the primary endpoint of RTOG 0933. There was no significant difference in HV between patients with deteriorated and nondeteriorated NCF, although in all instances, patients with deteriorated NCF had numerically lower HV. Conclusions: Larger HV was positively associated with improved performance on baseline and 4-month HVLT-R TR and DR scores in patients with brain metastases undergoing hippocampal-avoidant whole brain radiation therapy but was not associated with a change in NCF.
RESUMO
BACKGROUND: Optimal management for recurrent IDH-mutant glioma after radiation therapy (RT) is not well-defined. This study assesses practice patterns for managing recurrent IDH-mutant astrocytoma (Astro) and 1p/19q codeleted oligodendroglioma (Oligo) after RT and surveys their clinical outcomes after different salvage approaches. METHODS: Ninety-four recurrent Astro or Oligo patients after RT who received salvage systemic therapy (SST) between 2001 and 2019 at a tertiary cancer center were retrospectively analyzed. SST was defined as either alkylating chemotherapy (AC) or nonalkylating therapy (non-AC). Overall survival (OS) and progression-free survival (PFS) were calculated using the Kaplan-Meier method from the start of SST. Multivariable analysis (MVA) was conducted using Cox regression analysis. RESULTS: Recurrent Oligo (n = 35) had significantly higher PFS (median: 3.1 vs 0.8 years, respectively, P = .002) and OS (median: 6.3 vs 1.5 years, respectively, P < .001) than Astro (n = 59). Overall, 90% of recurrences were local. Eight-three percent received AC as the first-line SST; 50% received salvage surgery before SST; approximately 50% with local failure >2 years after prior RT received reirradiation. On MVA, non-AC was associated with worse OS for both Oligo and Astro; salvage surgery was associated with improved PFS and OS for Astro; early reirradiation was associated with improved PFS for Astro. CONCLUSIONS: Recurrent radiation-relapsed IDH-mutant gliomas represent a heterogeneous group with variable treatment approaches. Surgery, AC, and reirradiation remain the mainstay of salvage options for retreatment.
RESUMO
OBJECTIVE: The internal high-dose volume varies widely for a given prescribed dose during stereotactic radiosurgery (SRS) to treat brain metastases (BMs). This may be altered during treatment planning, and the authors have previously shown that this improves local control (LC) for non-small cell lung cancer BMs without increasing toxicity. Here, they seek to identify potentially actionable dosimetric predictors of LC after SRS for melanoma BM. METHODS: The records of patients with unresected melanoma BM treated with single-fraction Gamma Knife RS between 2006 and 2017 were reviewed. LC was assessed on a per-lesion basis, defined as stability or a decrease in lesion size. Outcome-oriented approaches were utilized to determine optimal dichotomization for dosimetric variables relative to LC. Univariable and multivariable Cox regression analysis was implemented to evaluate the impact of collected parameters on LC. RESULTS: Two hundred eighty-seven melanoma BMs in 79 patients were identified. The median age was 56 years (range 31-86 years). The median follow-up was 7.6 months (range 0.5-81.6 months), and the median survival was 9.3 months (range 1.3-81.6 months). Lesions were optimally stratified by volume receiving at least 30 Gy (V30) greater than or equal to versus less than 25%. V30 was ≥ and < 25% in 147 and 140 lesions, respectively. For all patients, 1-year LC was 83% versus 66% for V30 ≥ and < 25%, respectively (p = 0.001). Stratifying by volume, lesions 2 cm or less (n = 215) had 1-year LC of 82% versus 70% (p = 0.013) for V30 ≥ and < 25%, respectively. Lesions > 2 to 3 cm (n = 32) had 1-year LC of 100% versus 43% (p = 0.214) for V30 ≥ and < 25%, respectively. V30 was still predictive of LC even after controlling for the use of immunotherapy and targeted therapy. Radionecrosis occurred in 2.8% of lesions and was not significantly associated with V30. CONCLUSIONS: For a given prescription dose, an increased internal high-dose volume, as indicated by measures such as V30 ≥ 25%, is associated with improved LC but not increased toxicity in single-fraction SRS for melanoma BM. Internal dose escalation is an independent predictor of improved LC even in patients receiving immunotherapy and/or targeted therapy. This represents a dosimetric parameter that is actionable at the time of treatment planning and warrants further evaluation.
RESUMO
INTRODUCTION: Squamous cell carcinoma (SqCC) is the second most common histology of primary bladder cancer, but still very limited information is known about its treatment outcomes. Most bladder cancer trials have excluded SqCC, and the current treatment paradigm for localized SqCC is extrapolated from results in urothelial carcinoma (UC). In particular, there is limited data on the efficacy of definitive chemo-radiotherapy (CRT). In this study, we compare overall survival outcomes between SqCC and UC patients treated with definitive CRT. MATERIALS/METHODS: We queried the National Cancer Database (NCDB) for muscle-invasive (cT2-T4 N0 M0) bladder cancer patients diagnosed from 2004 to 2013 who underwent concurrent CRT. Propensity matching was performed to match patients with SqCC to those with UC. OS was analyzed using the Kaplan-Meier survival method, and the log-rank test and Cox regression were used for analyses. RESULTS: 3332 patients met inclusion criteria of which 79 (2.3%) had SqCC. 73.4% of SqCC patients had clinical T2 disease compared to 82.5% of UC patients. Unadjusted median OS for SqCC patients was 15.6â¯months (95% CI, 11.7-19.6) versus 29.1â¯months (95% CI, 27.5-30.7) for those with UC (Pâ¯<â¯0.0001). On multivariable analysis, factors associated with worse OS included: SqCC histology [HR: 1.53 (95% CI, 1.19-1.97); Pâ¯=â¯0.001], increasing age [HR: 1.02 (95% CI, 1.02-1.03); Pâ¯<â¯0.0001], increasing clinical T-stage [HR: 1.21 (95% CI, 1.13-1.29); Pâ¯<â¯0.0001], and Charlson-Deyo comorbidity index [HR: 1.26 (95% CI, 1.18-1.33); Pâ¯<â¯0.0001]. Seventy-seven SqCC patients were included in the propensity-matched analysis (154 total patients) with a median OS for SqCC patients of 15.1â¯months (95% CI, 11.1-18.9) vs. 30.4â¯months (95% CI, 19.4-41.4) for patients with UC (Pâ¯=â¯0.013). CONCLUSIONS: This is the largest study to-date assessing survival outcomes for SqCC of the bladder treated with CRT. In this study, SqCC had worse overall survival compared to UC patients. Histology had a greater impact on survival than increasing T-stage, suggesting that histology should be an important factor when determining a patient's treatment strategy and that treatment intensification in this subgroup may be warranted.
RESUMO
PURPOSE: Preclinical studies have suggested that radiation therapy (RT) enhances antitumor immune response and can act synergistically when administered with immunotherapy. However, this effect in melanoma brain metastasis is not well studied. We aim to explore the clinical effect of combining RT and immunotherapy in patients with melanoma brain metastasis (MBM). MATERIALS AND METHODS: Patients with MBM between 2011 and 2013 were obtained from the National Cancer Database. Patients who did not have identifiable sites of metastasis and who did not receive RT for the treatment of their MBM were excluded. Patients were separated into cohorts that received immunotherapy versus patients who did not. Univariable and multivariable analyses were performed using Cox model to determine predictors of OS. Kaplan-Meier method was used to compare OS. Univariable and multivariable analyses using logistic regression model were used to determine the factors predictive for the use of immunotherapy. Propensity score analysis was used to account for differences in baseline patient characteristics between the RT and RTâ¯+â¯immunotherapy groups. Significance was defined as a P valueâ¯≤â¯0.05. RESULTS: A total of 1104 patients were identified: 912 received RT alone and 192 received RT plus immunotherapy. The median follow-up time was 6.4 (0.1-56.8) months. Patients with extracranial disease (OR 1.603, 95% CI 1.146-2.243, Pâ¯=â¯0.006), and patients receiving SRS (OR 1.955, 95% CI 1.410-2.711, Pâ¯<â¯0.001) as compared to WBRT, had a higher likelihood of being treated with immunotherapy. The utilization of immunotherapy had nearly doubled between 2011 and 2013 (12.9-22.8%). On multivariable analysis, factors associated with superior OS were younger age, lower medical comorbidities, lack of extracranial disease, and treatment with immunotherapy and SRS. The median OS was 11.1 (8.9-13.4) months in RT plus immunotherapy vs. 6.2 (5.6-6.8) months in RT alone (Pâ¯<â¯0.001), which remained significant after propensity score matching. CONCLUSIONS: An increase in trend for the use of immunotherapy was noted, however, an overwhelming majority of the patients with this disease are still treated without immunotherapy. Addition of immunotherapy to RT is associated with improved OS in MBM. Given the selection biases that are inherent in this analysis, prospective trials investigating the combination of RT, especially SRS and immunotherapy are warranted.
Assuntos
Neoplasias Encefálicas/terapia , Imunoterapia/métodos , Melanoma/terapia , Radiocirurgia/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos Imunológicos/uso terapêutico , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/secundário , Terapia Combinada , Irradiação Craniana/métodos , Irradiação Craniana/mortalidade , Feminino , Humanos , Imunoterapia/mortalidade , Ipilimumab/uso terapêutico , Estimativa de Kaplan-Meier , Masculino , Melanoma/mortalidade , Melanoma/secundário , Pessoa de Meia-Idade , Pontuação de Propensão , Estudos Prospectivos , Radiocirurgia/mortalidade , Resultado do Tratamento , Adulto JovemRESUMO
PURPOSE: As stereotactic body radiation therapy (SBRT) has emerged as a quick, effective, and well-tolerated treatment for early stage non-small cell lung carcinoma (NSCLC), it can be difficult to convince patients to quit smoking in follow-up. We evaluated whether there was a survival benefit to smoking cessation after SBRT. METHODS AND MATERIALS: Patients with early-stage NSCLC treated from 2004 to 2013 who were still smoking tobacco at the time of SBRT were identified from a prospective institutional review board-approved registry. Peripheral tumors were treated to 54 Gy in 3 fractions and central tumors to 50 Gy in 5 fractions. Patients were reviewed for overall survival (OS) and disease progression. The log-rank and Cox regression tests were used to identify factors predictive of OS. RESULTS: Thirty-two patients (27%) quit smoking after SBRT, and 87 (73%) continued smoking. Median follow-up was 22 months (range, 2-87). On multivariate analysis, smoking status (hazard ratio, 2.1; 95% confidence interval, 1.02-4.2; P = .045), increasing age-adjusted Charlson comorbidity score and larger tumor size were predictive of worse OS. The prior number of cigarette pack-years was not significant (P = .62). In a Kaplan-Meier comparison, smoking cessation after SBRT was associated with improved 2-year OS, 78% versus 69% (P = .014). There was no significant difference in 2-year progression-free survival (75% vs 55%, P = .23) or local control (97% vs 88%, P = .63). CONCLUSION: OS is significantly improved in patients who stop smoking after SBRT for early-stage NSCLC, no matter their previous smoking history. Encouraging smoking cessation should be an important part of every posttreatment visit.