Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Annu Rev Immunol ; 35: 85-118, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28226225

RESUMO

Intrathymic T cell development is a complex process that depends upon continuous guidance from thymus stromal cell microenvironments. The thymic epithelium within the thymic stroma comprises highly specialized cells with a high degree of anatomic, phenotypic, and functional heterogeneity. These properties are collectively required to bias thymocyte development toward production of self-tolerant and functionally competent T cells. The importance of thymic epithelial cells (TECs) is evidenced by clear links between their dysfunction and multiple diseases where autoimmunity and immunodeficiency are major components. Consequently, TECs are an attractive target for cell therapies to restore effective immune system function. The pathways and molecular regulators that control TEC development are becoming clearer, as are their influences on particular stages of T cell development. Here, we review both historical and the most recent advances in our understanding of the cellular and molecular mechanisms controlling TEC development, function, dysfunction, and regeneration.


Assuntos
Células Epiteliais/metabolismo , Linfócitos T/fisiologia , Timo/patologia , Animais , Autoimunidade , Diferenciação Celular , Células Epiteliais/imunologia , Fatores de Transcrição Forkhead/metabolismo , Humanos , Tolerância Imunológica , Timo/imunologia , Fatores de Transcrição/metabolismo , Proteína AIRE
2.
Nat Immunol ; 23(7): 1098-1108, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35761088

RESUMO

Patients with loss of function in the gene encoding the master regulator of central tolerance AIRE suffer from a devastating disorder called autoimmune polyendocrine syndrome type 1 (APS-1), characterized by a spectrum of autoimmune diseases and severe mucocutaneous candidiasis. Although the key mechanisms underlying the development of autoimmunity in patients with APS-1 are well established, the underlying cause of the increased susceptibility to Candida albicans infection remains less understood. Here, we show that Aire+MHCII+ type 3 innate lymphoid cells (ILC3s) could sense, internalize and present C. albicans and had a critical role in the induction of Candida-specific T helper 17 (TH17) cell clones. Extrathymic Rorc-Cre-mediated deletion of Aire resulted in impaired generation of Candida-specific TH17 cells and subsequent overgrowth of C. albicans in the mucosal tissues. Collectively, our observations identify a previously unrecognized regulatory mechanism for effective defense responses against fungal infections.


Assuntos
Doenças Autoimunes , Candidíase , Poliendocrinopatias Autoimunes , Candida albicans , Candidíase/genética , Humanos , Imunidade Inata , Poliendocrinopatias Autoimunes/genética , Células Th17
3.
Nat Immunol ; 18(2): 161-172, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27941786

RESUMO

Aire is a transcriptional regulator that induces promiscuous expression of thousands of genes encoding tissue-restricted antigens (TRAs) in medullary thymic epithelial cells (mTECs). While the target genes of Aire are well characterized, the transcriptional programs that regulate its own expression have remained elusive. Here we comprehensively analyzed both cis-acting and trans-acting regulatory mechanisms and found that the Aire locus was insulated by the global chromatin organizer CTCF and was hypermethylated in cells and tissues that did not express Aire. In mTECs, however, Aire expression was facilitated by concurrent eviction of CTCF, specific demethylation of exon 2 and the proximal promoter, and the coordinated action of several transcription activators, including Irf4, Irf8, Tbx21, Tcf7 and Ctcfl, which acted on mTEC-specific accessible regions in the Aire locus.


Assuntos
Células Epiteliais/imunologia , Redes Reguladoras de Genes , Linfócitos T/fisiologia , Timo/imunologia , Fatores de Transcrição/metabolismo , Animais , Apresentação de Antígeno/genética , Autoantígenos/metabolismo , Fator de Ligação a CCCTC , Diferenciação Celular , Células Cultivadas , Seleção Clonal Mediada por Antígeno , Metilação de DNA , Regulação da Expressão Gênica , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Especificidade de Órgãos/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Timo/citologia , Fatores de Transcrição/genética , Proteína AIRE
4.
Nature ; 622(7981): 164-172, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37674082

RESUMO

Development of immunocompetent T cells in the thymus is required for effective defence against all types of pathogens, including viruses, bacteria and fungi. To this end, T cells undergo a very strict educational program in the thymus, during which both non-functional and self-reactive T cell clones are eliminated by means of positive and negative selection1.Thymic epithelial cells (TECs) have an indispensable role in these processes, and previous studies have shown the notable heterogeneity of these cells2-7. Here, using multiomic analysis, we provide further insights into the functional and developmental diversity of TECs in mice, and reveal a detailed atlas of the TEC compartment according to cell transcriptional states and chromatin landscapes. Our analysis highlights unconventional TEC subsets that are similar to functionally well-defined parenchymal populations, including endocrine cells, microfold cells and myocytes. By focusing on the endocrine and microfold TEC populations, we show that endocrine TECs require Insm1 for their development and are crucial to maintaining thymus cellularity in a ghrelin-dependent manner; by contrast, microfold TECs require Spib for their development and are essential for the generation of thymic IgA+ plasma cells. Collectively, our study reveals that medullary TECs have the potential to differentiate into various types of molecularly distinct and functionally defined cells, which not only contribute to the induction of central tolerance, but also regulate the homeostasis of other thymus-resident populations.


Assuntos
Tolerância a Antígenos Próprios , Linfócitos T , Timo , Animais , Camundongos , Diferenciação Celular , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Tolerância a Antígenos Próprios/imunologia , Tolerância a Antígenos Próprios/fisiologia , Linfócitos T/classificação , Linfócitos T/citologia , Linfócitos T/imunologia , Timo/citologia , Timo/imunologia , Tecido Parenquimatoso , Células Musculares , Células Endócrinas , Cromatina , Transcrição Gênica , Grelina
5.
Nature ; 624(7992): 653-662, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37993717

RESUMO

Ameloblasts are specialized epithelial cells in the jaw that have an indispensable role in tooth enamel formation-amelogenesis1. Amelogenesis depends on multiple ameloblast-derived proteins that function as a scaffold for hydroxyapatite crystals. The loss of function of ameloblast-derived proteins results in a group of rare congenital disorders called amelogenesis imperfecta2. Defects in enamel formation are also found in patients with autoimmune polyglandular syndrome type-1 (APS-1), caused by AIRE deficiency3,4, and in patients diagnosed with coeliac disease5-7. However, the underlying mechanisms remain unclear. Here we show that the vast majority of patients with APS-1 and coeliac disease develop autoantibodies (mostly of the IgA isotype) against ameloblast-specific proteins, the expression of which is induced by AIRE in the thymus. This in turn results in a breakdown of central tolerance, and subsequent generation of corresponding autoantibodies that interfere with enamel formation. However, in coeliac disease, the generation of such autoantibodies seems to be driven by a breakdown of peripheral tolerance to intestinal antigens that are also expressed in enamel tissue. Both conditions are examples of a previously unidentified type of IgA-dependent autoimmune disorder that we collectively name autoimmune amelogenesis imperfecta.


Assuntos
Amelogênese Imperfeita , Autoanticorpos , Doença Celíaca , Poliendocrinopatias Autoimunes , Humanos , Amelogênese Imperfeita/complicações , Amelogênese Imperfeita/imunologia , Autoanticorpos/imunologia , Doença Celíaca/complicações , Doença Celíaca/imunologia , Imunoglobulina A/imunologia , Poliendocrinopatias Autoimunes/complicações , Poliendocrinopatias Autoimunes/imunologia , Proteínas/imunologia , Proteínas/metabolismo , Ameloblastos/metabolismo , Esmalte Dentário/imunologia , Esmalte Dentário/metabolismo , Proteína AIRE/deficiência , Antígenos/imunologia , Antígenos/metabolismo , Intestinos/imunologia , Intestinos/metabolismo
6.
Nat Immunol ; 16(7): 737-45, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26006015

RESUMO

Aire is a transcriptional regulator that induces the promiscuous expression of thousands of tissue-restricted antigens (TRAs) in medullary thymic epithelial cells (mTECs), a step critical for the induction of immunological self-tolerance. Studies have offered molecular insights into how Aire operates, but more comprehensive understanding of this process still remains elusive. Here we found abundant expression of the protein deacetylase Sirtuin-1 (Sirt1) in mature Aire(+) mTECs, wherein it was required for the expression of Aire-dependent TRA-encoding genes and the subsequent induction of immunological self-tolerance. Our study elucidates a previously unknown molecular mechanism for Aire-mediated transcriptional regulation and identifies a unique function for Sirt1 in preventing organ-specific autoimmunity.


Assuntos
Tolerância Central/imunologia , Sirtuína 1/imunologia , Fatores de Transcrição/imunologia , Ativação Transcricional/imunologia , Acetilação , Animais , Antígenos/imunologia , Tolerância Central/genética , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Citometria de Fluxo , Células HEK293 , Humanos , Immunoblotting , Subunidade gama Comum de Receptores de Interleucina/deficiência , Subunidade gama Comum de Receptores de Interleucina/genética , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , Especificidade de Órgãos/imunologia , Ligação Proteica/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sirtuína 1/genética , Sirtuína 1/metabolismo , Timo/citologia , Timo/imunologia , Timo/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma/imunologia , Proteína AIRE
7.
Cell ; 140(1): 123-35, 2010 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-20085707

RESUMO

Aire induces the expression of a battery of peripheral-tissue self-antigens (PTAs) in thymic stromal cells, promoting the clonal deletion of differentiating T cells that recognize them. Just how Aire targets and induces PTA transcripts remains largely undefined. Screening via Aire-targeted coimmunoprecipitation followed by mass spectrometry, and validating by multiple RNAi-mediated knockdown approaches, we identified a large set of proteins that associate with Aire. They fall into four major functional classes: nuclear transport, chromatin binding/structure, transcription and pre-mRNA processing. One set of Aire interactions centered on DNA protein kinase and a group of proteins it partners with to resolve DNA double-stranded breaks or promote transcriptional elongation. Another set of interactions was focused on the pre-mRNA splicing and maturation machinery, potentially explaining the markedly more effective processing of PTA transcripts in the presence of Aire. These findings suggest a model to explain Aire's widespread targeting and induction of weakly transcribed chromatin regions.


Assuntos
Autoantígenos/genética , Regulação da Expressão Gênica , Tolerância Imunológica , Timo/imunologia , Fatores de Transcrição/metabolismo , Animais , Antígenos de Neoplasias/metabolismo , Autoantígenos/imunologia , Linhagem Celular , Quebras de DNA de Cadeia Dupla , DNA Topoisomerases Tipo II/metabolismo , Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Imunoprecipitação , Espectrometria de Massas , Camundongos , Camundongos SCID , Proteínas Nucleares/metabolismo , Ligação Proteica , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , Timo/citologia , Proteína AIRE
8.
Immunity ; 42(6): 1185-96, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26084028

RESUMO

The autoimmune regulator (AIRE) gene is crucial for establishing central immunological tolerance and preventing autoimmunity. Mutations in AIRE cause a rare autosomal-recessive disease, autoimmune polyendocrine syndrome type 1 (APS-1), distinguished by multi-organ autoimmunity. We have identified multiple cases and families with mono-allelic mutations in the first plant homeodomain (PHD1) zinc finger of AIRE that followed dominant inheritance, typically characterized by later onset, milder phenotypes, and reduced penetrance compared to classical APS-1. These missense PHD1 mutations suppressed gene expression driven by wild-type AIRE in a dominant-negative manner, unlike CARD or truncated AIRE mutants that lacked such dominant capacity. Exome array analysis revealed that the PHD1 dominant mutants were found with relatively high frequency (>0.0008) in mixed populations. Our results provide insight into the molecular action of AIRE and demonstrate that disease-causing mutations in the AIRE locus are more common than previously appreciated and cause more variable autoimmune phenotypes.


Assuntos
Análise Mutacional de DNA/métodos , Genes Dominantes/genética , Mutação/genética , Poliendocrinopatias Autoimunes/genética , Fatores de Transcrição/genética , Adolescente , Adulto , Sequência de Aminoácidos , Autoimunidade/genética , Criança , Pré-Escolar , Feminino , Frequência do Gene , Humanos , Masculino , Repetições de Microssatélites/genética , Dados de Sequência Molecular , Noruega , Especificidade de Órgãos/genética , Linhagem , Penetrância , Fenótipo , Federação Russa , Adulto Jovem , Proteína AIRE
9.
Nature ; 559(7715): 622-626, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30022162

RESUMO

T cell development and selection are coordinated in the thymus by a specialized niche of diverse stromal populations1-3. Although much progress has been made over the years in identifying the functions of the different cell types of the thymic stromal compartment, there is no comprehensive characterization of their diversity and heterogeneity. Here we combined massively parallel single-cell RNA-sequencing4,5, spatial mapping, chromatin profiling and gene targeting to characterize de novo the entire stromal compartment of the mouse thymus. We identified dozens of cell states, with thymic epithelial cells (TECs) showing the highest degree of heterogeneity. Our analysis highlights four major medullary TEC (mTEC I-IV) populations, with distinct molecular functions, epigenetic landscapes and lineage regulators. Specifically, mTEC IV constitutes a new and highly divergent TEC lineage with molecular characteristics of the gut chemosensory epithelial tuft cells. Mice deficient in Pou2f3, a master regulator of tuft cells, have complete and specific depletion of mTEC IV cells, which results in increased levels of thymus-resident type-2 innate lymphoid cells. Overall, our study provides a comprehensive characterization of the thymic stroma and identifies a new tuft-like TEC population, which is critical for shaping the immune niche in the thymus.


Assuntos
Células Epiteliais/citologia , Células Epiteliais/metabolismo , Interleucina-17/metabolismo , Interleucinas/metabolismo , Análise de Célula Única , Timo/citologia , Timo/imunologia , Animais , Epigênese Genética , Células Epiteliais/imunologia , Feminino , Humanos , Interleucina-17/biossíntese , Interleucinas/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Modelos Moleculares , Fatores de Transcrição/biossíntese , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína AIRE
11.
Immunol Rev ; 271(1): 127-40, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27088911

RESUMO

The establishment of central tolerance in the thymus is critical for avoiding deleterious autoimmune diseases. Autoimmune regulator (AIRE), the causative gene in autoimmune polyendocrine syndrome type-1 (APS-1), is crucial for the establishment of self-tolerance in the thymus by promoting promiscuous expression of a wide array of tissue-restricted self-antigens. This step is critical for elimination of high-affinity self-reactive T cells from the immunological repertoire, and for the induction of a specific subset of Foxp3(+) T-regulatory (Treg ) cells. In this review, we discuss the most recent advances in our understanding of how AIRE operates on molecular and cellular levels, as well as of how its loss of function results in breakdown of self-tolerance mechanisms characterized by a broad and heterogeneous repertoire of autoimmune phenotypes.


Assuntos
Seleção Clonal Mediada por Antígeno , Poliendocrinopatias Autoimunes/genética , Linfócitos T Reguladores/fisiologia , Fatores de Transcrição/genética , Animais , Autoantígenos/imunologia , Autoimunidade , Tolerância Central , Fatores de Transcrição Forkhead/metabolismo , Humanos , Fatores de Transcrição/metabolismo , Proteína AIRE
12.
PLoS Genet ; 12(1): e1005776, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26789017

RESUMO

Thymic medullary regions are formed in neonatal mice as islet-like structures, which increase in size over time and eventually fuse a few weeks after birth into a continuous structure. The development of medullary thymic epithelial cells (TEC) is dependent on NF-κB associated signaling though other signaling pathways may contribute. Here, we demonstrate that Stat3-mediated signals determine medullary TEC cellularity, architectural organization and hence the size of the medulla. Deleting Stat3 expression selectively in thymic epithelia precludes the postnatal enlargement of the medulla retaining a neonatal architecture of small separate medullary islets. In contrast, loss of Stat3 expression in cortical TEC neither affects the cellularity or organization of the epithelia. Activation of Stat3 is mainly positioned downstream of EGF-R as its ablation in TEC phenocopies the loss of Stat3 expression in these cells. These results indicate that Stat3 meditated signal via EGF-R is required for the postnatal development of thymic medullary regions.


Assuntos
Diferenciação Celular/genética , Células Epiteliais , Receptores ErbB/genética , Fator de Transcrição STAT3/biossíntese , Animais , Desenvolvimento Embrionário , Receptores ErbB/biossíntese , Citometria de Fluxo , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Fator de Transcrição STAT3/genética , Transdução de Sinais , Linfócitos T/metabolismo , Timócitos/metabolismo , Timo/crescimento & desenvolvimento , Timo/metabolismo
14.
Eur J Immunol ; 46(1): 22-33, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26450177

RESUMO

Autoimmune regulator (AIRE) is a unique transcriptional regulator that induces promiscuous expression of thousands of tissue-restricted antigens (TRAs) in medullary thymic epithelial cells (mTECs), a step critical for the induction of immunological self-tolerance. The past 15 years have seen dramatic progress in our understanding of how AIRE induces immunological self-tolerance on a molecular level. This major advancement can be greatly attributed to the identification of a large variety of proteins that physically associate with AIRE, supporting and regulating its transcription-transactivation capacity. These diverse molecular partnerships have been shown to play roles in shuttling AIRE to the nucleus, securing AIRE's interaction with nuclear matrix and chromatin, releasing RNA polymerase-II from its stalled state and potentiating AIRE-mediated gene expression, among others. In this review we discuss the relationship of AIRE with its vast and rather diverse repertoire of partners and highlight how such "promiscuous partnerships" contribute to the phenomenon of "promiscuous gene expression" in the thymus.


Assuntos
Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Tolerância a Antígenos Próprios/genética , Tolerância a Antígenos Próprios/imunologia , Fatores de Transcrição/imunologia , Animais , Humanos , Proteína AIRE
15.
Proc Natl Acad Sci U S A ; 109(2): 535-40, 2012 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-22203960

RESUMO

Aire is a transcriptional regulator that induces expression of peripheral tissue antigens (PTA) in thymic medullary epithelial cells (MECs), driving immunological self-tolerance in differentiating T cells. To elucidate its mechanistic pathways, we examined its transcriptional impact in MECs in vivo by microarray analysis with mRNA-spanning probes. This analysis revealed initiation of Aire-activated genes to be comparable in Aire-deficient and wild-type MECs, but with a block to elongation after 50-100 bp in the absence of Aire, suggesting activation by release of stalled polymerases by Aire. In contrast, patterns of activation by transcription factors such as Klf4 were consistent with regulation of initiation. Mapping of Aire and RNA polymerase-II (Pol-II) by ChIP and high-throughput sequencing (ChIP-seq) revealed that Aire bound all Pol-II-rich transcriptional start sites (TSS), irrespective of its eventual effect. However, the genes it preferentially activated were characterized by a relative surfeit of stalled polymerases at the TSS, which resolved once Aire was introduced into cells. Thus, transcript mapping and ChIP-seq data indicate that Aire activates ectopic transcription not through specific recognition of PTA gene promoters but by releasing stalled polymerases.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Células Epiteliais/metabolismo , Regulação da Expressão Gênica/imunologia , Tolerância a Antígenos Próprios/imunologia , Linfócitos T/imunologia , Timo/citologia , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Imunoprecipitação da Cromatina , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Fator 4 Semelhante a Kruppel , Camundongos , Camundongos Endogâmicos C57BL , Análise em Microsséries , Linfócitos T/citologia , Proteína AIRE
16.
Nat Rev Immunol ; 24(1): 64-77, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37479834

RESUMO

Antigen-presenting cells (APCs) are master regulators of the immune response by directly interacting with T cells to orchestrate distinct functional outcomes. Several types of professional APC exist, including conventional dendritic cells, B cells and macrophages, and numerous other cell types have non-classical roles in antigen presentation, such as thymic epithelial cells, endothelial cells and granulocytes. Accumulating evidence indicates the presence of a new family of APCs marked by the lineage-specifying transcription factor retinoic acid receptor-related orphan receptor-γt (RORγt) and demonstrates that these APCs have key roles in shaping immunity, inflammation and tolerance, particularly in the context of host-microorganism interactions. These RORγt+ APCs include subsets of group 3 innate lymphoid cells, extrathymic autoimmune regulator-expressing cells and, potentially, other emerging populations. Here, we summarize the major findings that led to the discovery of these RORγt+ APCs and their associated functions. We discuss discordance in recent reports and identify gaps in our knowledge in this burgeoning field, which has tremendous potential to advance our understanding of fundamental immune concepts.


Assuntos
Linfócitos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Humanos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Imunidade Inata , Células Endoteliais , Células Apresentadoras de Antígenos/metabolismo , Proteínas de Transporte/metabolismo
17.
Nat Biomed Eng ; 8(1): 30-44, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37550425

RESUMO

Conventional methods for humanizing animal-derived antibodies involve grafting their complementarity-determining regions onto homologous human framework regions. However, this process can substantially lower antibody stability and antigen-binding affinity, and requires iterative mutational fine-tuning to recover the original antibody properties. Here we report a computational method for the systematic grafting of animal complementarity-determining regions onto thousands of human frameworks. The method, which we named CUMAb (for computational human antibody design; available at http://CUMAb.weizmann.ac.il ), starts from an experimental or model antibody structure and uses Rosetta atomistic simulations to select designs by energy and structural integrity. CUMAb-designed humanized versions of five antibodies exhibited similar affinities to those of the parental animal antibodies, with some designs showing marked improvement in stability. We also show that (1) non-homologous frameworks are often preferred to highest-homology frameworks, and (2) several CUMAb designs that differ by dozens of mutations and that use different human frameworks are functionally equivalent.


Assuntos
Anticorpos , Regiões Determinantes de Complementaridade , Animais , Humanos , Regiões Determinantes de Complementaridade/química , Regiões Determinantes de Complementaridade/genética , Anticorpos/química
18.
J Exp Med ; 221(1)2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37902602

RESUMO

Intestinal epithelial cells have the capacity to upregulate MHCII molecules in response to certain epithelial-adhesive microbes, such as segmented filamentous bacteria (SFB). However, the mechanism regulating MHCII expression as well as the impact of epithelial MHCII-mediated antigen presentation on T cell responses targeting those microbes remains elusive. Here, we identify the cellular network that regulates MHCII expression on the intestinal epithelium in response to SFB. Since MHCII on the intestinal epithelium is dispensable for SFB-induced Th17 response, we explored other CD4+ T cell-based responses induced by SFB. We found that SFB drive the conversion of cognate CD4+ T cells to granzyme+ CD8α+ intraepithelial lymphocytes. These cells accumulate in small intestinal intraepithelial space in response to SFB. Yet, their accumulation is abrogated by the ablation of MHCII on the intestinal epithelium. Finally, we show that this mechanism is indispensable for the SFB-driven increase in the turnover of epithelial cells in the ileum. This study identifies a previously uncharacterized immune response to SFB, which is dependent on the epithelial MHCII function.


Assuntos
Apresentação de Antígeno , Linfócitos T CD4-Positivos , Células Epiteliais , Granzimas , Bactérias
19.
Sci Immunol ; 9(91): eabq6930, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38215193

RESUMO

The thymus is a primary lymphoid organ that is essential for the establishment of adaptive immunity through generation of immunocompetent T cells. In response to various stress signals, the thymus undergoes acute but reversible involution. However, the mechanisms governing its recovery are incompletely understood. Here, we used a dexamethasone-induced acute thymic involution mouse model to investigate how thymic hematopoietic cells (excluding T cells) contribute to thymic regeneration. scRNA-seq analysis revealed marked transcriptional and cellular changes in various thymic populations and highlighted thymus-resident innate lymphoid cells type 2 (ILC2) as a key cell type involved in the response to damage. We identified that ILC2 are activated by the alarmins IL-25 and IL-33 produced in response to tissue damage by thymic tuft cells and fibroblasts, respectively. Moreover, using mouse models deficient in either tuft cells and/or IL-33, we found that these alarmins are required for effective thymus regeneration after dexamethasone-induced damage. We also demonstrate that upon their damage-dependent activation, thymic ILC2 produce several effector molecules linked to tissue regeneration, such as amphiregulin and IL-13, which in turn promote thymic epithelial cell differentiation. Collectively, our study elucidates a previously undescribed role for thymic tuft cells and fibroblasts in thymus regeneration through activation of the type 2 immune response.


Assuntos
Imunidade Inata , Interleucina-33 , Camundongos , Animais , Linfócitos , Células em Tufo , Alarminas , Modelos Animais de Doenças , Fibroblastos , Dexametasona/farmacologia
20.
J Clin Invest ; 133(21)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37909333

RESUMO

Autoimmune polyendocrine syndrome type 1 (APS-1) is caused by mutations in the autoimmune regulator (AIRE) gene. Most patients present with severe chronic mucocutaneous candidiasis and organ-specific autoimmunity from early childhood, but the clinical picture is highly variable. AIRE is crucial for negative selection of T cells, and scrutiny of different patient mutations has previously highlighted many of its molecular mechanisms. In patients with a milder adult-onset phenotype sharing a mutation in the canonical donor splice site of intron 7 (c.879+1G>A), both the predicted altered splicing pattern with loss of exon 7 (AireEx7-/-) and normal full-length AIRE mRNA were found, indicating leaky rather than abolished mRNA splicing. Analysis of a corresponding mouse model demonstrated that the AireEx7-/- mutant had dramatically impaired transcriptional capacity of tissue-specific antigens in medullary thymic epithelial cells but still retained some ability to induce gene expression compared with the complete loss-of-function AireC313X-/- mutant. Our data illustrate an association between AIRE activity and the severity of autoimmune disease, with implications for more common autoimmune diseases associated with AIRE variants, such as primary adrenal insufficiency, pernicious anemia, type 1 diabetes, and rheumatoid arthritis.


Assuntos
Doenças Autoimunes , Poliendocrinopatias Autoimunes , Adulto , Animais , Pré-Escolar , Humanos , Camundongos , Mutação , Poliendocrinopatias Autoimunes/genética , RNA Mensageiro , Linfócitos T , Proteína AIRE
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA