Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 114(11): E2068-E2076, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28242687

RESUMO

Heme is ubiquitous, yet relatively little is known about the maintenance of labile pools of this cofactor, which likely ensures its timely bioavailability for proper cellular function. Quantitative analysis of labile heme is of fundamental importance to understanding how nature preserves access to the diverse chemistry heme enables, while minimizing cellular damage caused by its redox activity. Here, we have developed and characterized a protein-based sensor that undergoes fluorescence quenching upon heme binding. By genetically encoding this sensor in the human malarial parasite, Plasmodium falciparum, we have quantified cytosolic labile heme levels in intact, blood-stage parasites. Our findings indicate that a labile heme pool (∼1.6 µM) is stably maintained throughout parasite development within red blood cells, even during a period coincident with extensive hemoglobin degradation by the parasite. We also find that the heme-binding antimalarial drug chloroquine specifically increases labile cytosolic heme, indicative of dysregulation of this homeostatic pool that may be a relevant component of the antimalarial activity of this compound class. We propose that use of this technology under various environmental perturbations in P. falciparum can yield quantitative insights into fundamental heme biology.


Assuntos
Técnicas Biossensoriais , Heme/metabolismo , Plasmodium/metabolismo , Animais , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Expressão Gênica , Genes Reporter , Heme/química , Heme/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Plasmodium/genética , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
2.
Nat Commun ; 7: 11187, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-27041489

RESUMO

Plasmodium knowlesi is a zoonotic parasite transmitted from macaques causing malaria in humans in Southeast Asia. Plasmodium parasites bind to red blood cell (RBC) surface receptors, many of which are sialylated. While macaques synthesize the sialic acid variant N-glycolylneuraminic acid (Neu5Gc), humans cannot because of a mutation in the enzyme CMAH that converts N-acetylneuraminic acid (Neu5Ac) to Neu5Gc. Here we reconstitute CMAH in human RBCs for the reintroduction of Neu5Gc, which results in enhancement of P. knowlesi invasion. We show that two P. knowlesi invasion ligands, PkDBPß and PkDBPγ, bind specifically to Neu5Gc-containing receptors. A human-adapted P. knowlesi line invades human RBCs independently of Neu5Gc, with duplication of the sialic acid-independent invasion ligand, PkDBPα and loss of PkDBPγ. Our results suggest that absence of Neu5Gc on human RBCs limits P. knowlesi invasion, but that parasites may evolve to invade human RBCs through the use of sialic acid-independent pathways.


Assuntos
Malária/prevenção & controle , Ácido N-Acetilneuramínico/genética , Plasmodium knowlesi/patogenicidade , Zoonoses/parasitologia , Animais , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Genoma de Protozoário , Células HEK293 , Humanos , Oxigenases de Função Mista/genética , Ácido N-Acetilneuramínico/biossíntese , Ácido N-Acetilneuramínico/química , Ácidos Neuramínicos/química , Ácidos Neuramínicos/metabolismo , Plasmodium knowlesi/genética , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Zoonoses/prevenção & controle , Zoonoses/transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA