RESUMO
Curcumin is a polyphenolic compound possessing interesting anti-inflammatory and antioxidant properties and has the ability to induce the defensive protein heme oxygenase-1 (HO-1). The objective of this study was to investigate whether curcumin protects against cold storage-mediated damage of human adult atrial myoblast cells (Girardi cells) and to assess the potential involvement of HO-1 in this process. Girardi cells were exposed to either normothermic or hypothermic conditions in Celsior preservation solution in the presence or absence of curcumin. HO-1 protein expression and heme oxygenase activity as well as cellular damage were assessed after cold storage or cold storage followed by re-warming. In additional experiments, an inhibitor of heme oxygenase activity (tin protoporphyrin IX, 10 microM) or siRNA for HO-1 were used to investigate the participation of HO-1 as a mediator of curcumin-induced effects. Treatment with curcumin produced a marked induction of cardiac HO-1 in normothermic condition but cells were less responsive to the polyphenolic compound at low temperature. Cold storage-induced damage was markedly reduced in the presence of curcumin and HO-1 contributed to some extent to this effect. Thus, curcumin added to Celsior preservation solution effectively prevents the damage caused by cold-storage; this effect involves the protective enzyme HO-1 but also other not yet identified mechanisms.
Assuntos
Criopreservação , Curcumina/farmacologia , Mioblastos Cardíacos/efeitos dos fármacos , Mioblastos Cardíacos/patologia , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Temperatura Baixa , Crioprotetores/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Hemina/farmacologia , Humanos , Peróxido de Hidrogênio/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismoRESUMO
Chalcones are a group of plant-derived polyphenolic compounds that belong to the flavonoids family, and possess a wide variety of cytoprotective and modulatory functions. Chalcones exert their cytoprotective actions via activation of specific transcriptional factors and upregulation of endogenous defensive pathways, such as phase II enzymes and the stress protein heme oxygenase-1 (HO-1). In this study, we investigated the anti-inflammatory action of 2'-hydroxychalcone (2-HC) in a model of lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophages and examined the role of HO-1 in this process. Our results demonstrate that 2-HC potently induces HO-1 expression and markedly reduces LPS-mediated nitrite and TNF-alpha production. These effects are accompanied by inhibition of inducible nitric oxide synthase protein expression and abolished by blockade of heme oxygenase activity with either tin protoporphyrin IX or HO-1 small interfering RNA. By using a pharmacological approach and siRNA technology, we also found that phosphatidylinositol 3-kinase is a major cellular mediator in 2-HC-induced HO-1 expression. These findings strongly suggest that 2-HC exerts anti-inflammatory actions via activation of the HO-1 pathway and help to elucidate the mechanisms underlying the potential therapeutic value of chalcones.