Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Annu Rev Cell Dev Biol ; 28: 743-63, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23057749

RESUMO

One of the chief aims of modern biology is to understand the causes and mechanisms of morphological evolution. Multicellular animals display a stunning diversity of shapes and sizes of their bodies and individual suborganismal structures, much of it important to their survival. What is the most efficient way to study the evolution of morphological diversity? The old-new field of evolutionary developmental biology (evo-devo) can be particularly useful for understanding the origins of animal forms, as it aims to consolidate advances from disparate fields such as phylogenetics, genomics, morphometrics, cell biology, and developmental biology. We analyze the structure of some of the most successful recent evo-devo studies, which we see as having three distinct but highly interdependent components: (a) morphometrics, (b) identification of candidate mechanisms, and (c) functional experiments. Our case studies illustrate how multifarious evo-devo approaches taken within the three-winged evo-devo research program explain developmental mechanisms for morphological evolution across different phylogenetic scales.


Assuntos
Evolução Biológica , Morfogênese/genética , Adaptação Biológica/genética , Nadadeiras de Animais/fisiologia , Animais , Bico/fisiologia , Especiação Genética , Modelos Biológicos , Filogenia
2.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34750258

RESUMO

Darwin's finches are a classic example of adaptive radiation, exemplified by their adaptive and functional beak morphologies. To quantify their form, we carry out a morphometric analysis of the three-dimensional beak shapes of all of Darwin's finches and find that they can be fit by a transverse parabolic shape with a curvature that increases linearly from the base toward the tip of the beak. The morphological variation of beak orientation, aspect ratios, and curvatures allows us to quantify beak function in terms of the elementary theory of machines, consistent with the dietary variations across finches. Finally, to explain the origin of the evolutionary morphometry and the developmental morphogenesis of the finch beak, we propose an experimentally motivated growth law at the cellular level that simplifies to a variant of curvature-driven flow at the tissue level and captures the range of observed beak shapes in terms of a simple morphospace. Altogether, our study illuminates how a minimal combination of geometry and dynamics allows for functional form to develop and evolve.


Assuntos
Bico/anatomia & histologia , Tentilhões/anatomia & histologia , Animais , Evolução Biológica , Morfogênese/fisiologia
3.
Proc Biol Sci ; 290(2007): 20230420, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37752837

RESUMO

Adaptive avian radiations associated with the diversification of bird beaks into a multitude of forms enabling different functions are exemplified by Darwin's finches and Hawaiian honeycreepers. To elucidate the nature of these radiations, we quantified beak shape and skull shape using a variety of geometric measures that allowed us to collapse the variability of beak shape into a minimal set of geometric parameters. Furthermore, we find that just two measures of beak shape-the ratio of the width to length and the normalized sharpening rate (increase in the transverse beak curvature near the tip relative to that at the base of the beak)-are strongly correlated with diet. Finally, by considering how transverse sections to the beak centreline evolve with distance from the tip, we show that a simple geometry-driven growth law termed 'modified mean curvature flow' captures the beak shapes of Darwin's finches and Hawaiian honeycreepers. A surprising consequence of the simple growth law is that beak shapes that are not allowed based on the developmental programme of the beak are also not observed in nature, suggesting a link between evolutionary morphology and development in terms of growth-driven developmental constraints.


Assuntos
Bico , Tentilhões , Animais , Morfogênese , Evolução Biológica , Cabeça
4.
Development ; 144(23): 4284-4297, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29183941

RESUMO

In 1917, the publication of On Growth and Form by D'Arcy Wentworth Thompson challenged both mathematicians and naturalists to think about biological shapes and diversity as more than a confusion of chaotic forms generated at random, but rather as geometric shapes that could be described by principles of physics and mathematics. Thompson's work was based on the ideas of Galileo and Goethe on morphology and of Russell on functionalism, but he was first to postulate that physical forces and internal growth parameters regulate biological forms and could be revealed via geometric transformations in morphological space. Such precise mathematical structure suggested a unifying generative process, as reflected in the title of the book. To Thompson it was growth that could explain the generation of any particular biological form, and changes in ontogeny, rather than natural selection, could then explain the diversity of biological shapes. Whereas adaptationism, widely accepted in evolutionary biology, gives primacy to extrinsic factors in producing morphological variation, Thompson's 'laws of growth' provide intrinsic directives and constraints for the generation of individual shapes, helping to explain the 'profusion of forms, colours, and other modifications' observed in the living world.


Assuntos
Biologia do Desenvolvimento , Crescimento , Estruturas Animais/anatomia & histologia , Estruturas Animais/crescimento & desenvolvimento , Animais , Evolução Biológica , Aves/anatomia & histologia , Aves/crescimento & desenvolvimento , Biologia do Desenvolvimento/tendências , Modelos Biológicos , Morfogênese , Répteis/anatomia & histologia , Répteis/crescimento & desenvolvimento , Seleção Genética , Crânio/anatomia & histologia , Crânio/crescimento & desenvolvimento
5.
Dev Dyn ; 248(11): 1129-1143, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31348570

RESUMO

BACKGROUND: The neotropical leaf-nosed bats (Chiroptera, Phyllostomidae) are an ecologically diverse group of mammals with distinctive morphological adaptations associated with specialized modes of feeding. The dramatic skull shape changes between related species result from changes in the craniofacial development process, which brings into focus the nature of the underlying evolutionary developmental processes. RESULTS: In this study, we use three-dimensional geometric morphometrics to describe, quantify, and compare morphological modifications unfolding during evolution and development of phyllostomid bats. We examine how changes in development of the cranium may contribute to the evolution of the bat craniofacial skeleton. Comparisons of ontogenetic trajectories to evolutionary trajectories reveal two separate evolutionary developmental growth processes contributing to modifications in skull morphogenesis: acceleration and hypermorphosis. CONCLUSION: These findings are consistent with a role for peramorphosis, a form of heterochrony, in the evolution of bat dietary specialists.


Assuntos
Evolução Biológica , Quirópteros , Crânio , Animais , Quirópteros/anatomia & histologia , Quirópteros/fisiologia , Crânio/anatomia & histologia , Crânio/fisiologia , Especificidade da Espécie
6.
Proc Biol Sci ; 286(1897): 20182389, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30963831

RESUMO

The distinctive anatomy of the crocodylian skull is intimately linked with dietary ecology, resulting in repeated convergence on blunt- and slender-snouted ecomorphs. These evolutionary shifts depend upon modifications of the developmental processes which direct growth and morphogenesis. Here we examine the evolution of cranial ontogenetic trajectories to shed light on the mechanisms underlying convergent snout evolution. We use geometric morphometrics to quantify skeletogenesis in an evolutionary context and reconstruct ancestral patterns of ontogenetic allometry to understand the developmental drivers of craniofacial diversity within Crocodylia. Our analyses uncovered a conserved embryonic region of morphospace (CER) shared by all non-gavialid crocodylians regardless of their eventual adult ecomorph. This observation suggests the presence of conserved developmental processes during early development (before Ferguson stage 20) across most of Crocodylia. Ancestral state reconstruction of ontogenetic trajectories revealed heterochrony, developmental constraint, and developmental systems drift have all played essential roles in the evolution of ecomorphs. Based on these observations, we conclude that two separate, but interconnected, developmental programmes controlling craniofacial morphogenesis and growth enabled the evolutionary plasticity of skull shape in crocodylians.


Assuntos
Jacarés e Crocodilos/anatomia & histologia , Evolução Biológica , Crânio/anatomia & histologia , Jacarés e Crocodilos/embriologia , Animais , Arcada Osseodentária/anatomia & histologia , Filogenia
7.
Nature ; 487(7406): 223-6, 2012 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-22722850

RESUMO

The interplay of evolution and development has been at the heart of evolutionary theory for more than a century. Heterochrony­change in the timing or rate of developmental events­has been implicated in the evolution of major vertebrate lineages such as mammals, including humans. Birds are the most speciose land vertebrates, with more than 10,000 living species representing a bewildering array of ecologies. Their anatomy is radically different from that of other vertebrates. The unique bird skull houses two highly specialized systems: the sophisticated visual and neuromuscular coordination system allows flight coordination and exploitation of diverse visual landscapes, and the astonishing variations of the beak enable a wide range of avian lifestyles. Here we use a geometric morphometric approach integrating developmental, neontological and palaeontological data to show that the heterochronic process of paedomorphosis, by which descendants resemble the juveniles of their ancestors, is responsible for several major evolutionary transitions in the origin of birds. We analysed the variability of a series of landmarks on all known theropod dinosaur skull ontogenies as well as outgroups and birds. The first dimension of variability captured ontogeny, indicating a conserved ontogenetic trajectory. The second dimension accounted for phylogenetic change towards more bird-like dinosaurs. Basally branching eumaniraptorans and avialans clustered with embryos of other archosaurs, indicating paedomorphosis. Our results reveal at least four paedomorphic episodes in the history of birds combined with localized peramorphosis (development beyond the adult state of ancestors) in the beak. Paedomorphic enlargement of the eyes and associated brain regions parallels the enlargement of the nasal cavity and olfactory brain in mammals. This study can be a model for investigations of heterochrony in evolutionary transitions, illuminating the origin of adaptive features and inspiring studies of developmental mechanisms.


Assuntos
Aves/anatomia & histologia , Dinossauros/anatomia & histologia , Crânio/anatomia & histologia , Animais , Evolução Biológica , Dinossauros/crescimento & desenvolvimento , Fósseis , Filogenia , Análise de Componente Principal
8.
Trends Genet ; 29(12): 712-22, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24120296

RESUMO

In 1828, Karl Ernst von Baer formulated a series of empirically defined rules, which became widely known as the 'Law of Development' or 'von Baer's law of embryology'. This was one the most significant attempts to define the principles that connected morphological complexity and embryonic development. Understanding this relation is central to both evolutionary biology and developmental genetics. Von Baer's ideas have been both a source of inspiration to generations of biologists and a target of continuous criticism over many years. With advances in multiple fields, including paleontology, cladistics, phylogenetics, genomics, and cell and developmental biology, it is now possible to examine carefully the significance of von Baer's law and its predictions. In this review, I argue that, 185 years after von Baer's law was first formulated, its main concepts after proper refurbishing remain surprisingly relevant in revealing the fundamentals of the evolution-development connection, and suggest that their explanation should become the focus of renewed research.


Assuntos
Evolução Biológica , Modelos Teóricos
9.
Proc Natl Acad Sci U S A ; 109(40): 16222-7, 2012 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-22988109

RESUMO

The astonishing variation in the shape and size of bird beaks reflects a wide range of dietary specializations that played an important role in avian diversification. Among Darwin's finches, ground finches (Geospiza spp.) have beaks that represent scaling variations of the same shape, which are generated by alterations in the signaling pathways that regulate growth of the two skeletal components of the beak: the prenasal cartilage (pnc) and the premaxillary bone (pmx). Whether this developmental mechanism is responsible for variation within groups of other closely related bird species, however, has remained unknown. Here, we report that the Caribbean bullfinches (Loxigilla spp.), which are closely related to Darwin's finches, have independently evolved beaks of a novel shape, different from Geospiza, but also varying from each other only in scaling. However, despite sharing the same beak shape, the signaling pathways and tissues patterning Loxigilla beaks differ among the three species. In Loxigilla noctis, as in Geospiza, the pnc develops first, shaped by Bmp4 and CaM signaling, followed by the development of the pmx, regulated by TGFßIIr, ß-catenin, and Dkk3 signaling. In contrast, beak morphogenesis in Loxigilla violacea and Loxigilla portoricensis is generated almost exclusively by the pmx through a mechanism in which Ihh and Bmp4 synergize to promote expansion of bone tissue. Together, our results demonstrate high flexibility in the relationship between morphology and underlying developmental causes, where different developmental programs can generate identical shapes, and similar developmental programs can pattern different shapes.


Assuntos
Bico/embriologia , Evolução Biológica , Tentilhões/embriologia , Tentilhões/genética , Morfogênese/fisiologia , Filogenia , Transdução de Sinais/fisiologia , Animais , Sequência de Bases , Teorema de Bayes , Bico/anatomia & histologia , Proteína Morfogenética Óssea 4/metabolismo , Calmodulina/metabolismo , Cartilagem/embriologia , Embrião de Galinha , Ossos Faciais/embriologia , Proteínas Hedgehog/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Modelos Genéticos , Dados de Sequência Molecular , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Análise de Sequência de DNA , Especificidade da Espécie , beta Catenina/metabolismo
10.
Proc Biol Sci ; 281(1784): 20140329, 2014 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-24741020

RESUMO

Sexual dimorphisms vary widely among species. This variation must arise through sex-specific evolutionary modifications to developmental processes. Anolis lizards vary extensively in their expression of cranial dimorphism. Compared with other Anolis species, members of the carolinensis clade have evolved relatively high levels of cranial dimorphism; males of this clade have exceptionally long faces relative to conspecific females. Developmentally, this facial length dimorphism arises through an evolutionarily novel, clade-specific strategy. Our analyses herein reveal that sex-specific regulation of the oestrogen pathway underlies evolution of this exaggerated male phenotype, rather than the androgen or insulin growth factor pathways that have long been considered the primary regulators of male-biased dimorphism among vertebrates. Our results suggest greater intricacy in the genetic mechanisms that underlie sexual dimorphisms than previously appreciated.


Assuntos
Hormônios/genética , Lagartos/anatomia & histologia , Lagartos/fisiologia , Caracteres Sexuais , Crânio/anatomia & histologia , Androgênios/genética , Androgênios/metabolismo , Animais , Estrogênios/genética , Estrogênios/metabolismo , Hormônios/metabolismo , Lagartos/genética , Lagartos/crescimento & desenvolvimento , Masculino , Fenótipo , Reação em Cadeia da Polimerase em Tempo Real , Crânio/crescimento & desenvolvimento , Crânio/fisiologia , Especificidade da Espécie
11.
Proc Natl Acad Sci U S A ; 108(10): 4057-62, 2011 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-21368127

RESUMO

Bird beaks display tremendous variation in shape and size, which is closely associated with the exploitation of multiple ecological niches and likely played a key role in the diversification of thousands of avian species. Previous studies have demonstrated some of the molecular mechanisms that regulate morphogenesis of the prenasal cartilage, which forms the initial beak skeleton. However, much of the beak diversity in birds depends on variation in the premaxillary bone. It forms later in development and becomes the most prominent functional and structural component of the adult upper beak/jaw, yet its regulation is unknown. Here, we studied a group of Darwin's finch species with different beak shapes. We found that TGFßIIr, ß-catenin, and Dickkopf-3, the top candidate genes from a cDNA microarray screen, are differentially expressed in the developing premaxillary bone of embryos of species with different beak shapes. Furthermore, our functional experiments demonstrate that these molecules form a regulatory network governing the morphology of the premaxillary bone, which differs from the network controlling the prenasal cartilage, but has the same species-specific domains of expression. These results offer potential mechanisms that may explain how the tightly coupled depth and width dimensions can evolve independently. The two-module program of development involving independent regulating molecules offers unique insights into how different developmental pathways may be modified and combined to induce multidimensional shifts in beak morphology. Similar modularity in development may characterize complex traits in other organisms to a greater extent than is currently appreciated.


Assuntos
Bico/anatomia & histologia , Evolução Biológica , Tentilhões/anatomia & histologia , Animais , DNA Complementar , Tentilhões/embriologia , Tentilhões/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Análise de Sequência com Séries de Oligonucleotídeos , Receptores de Fatores de Crescimento Transformadores beta/genética , Especificidade da Espécie , beta Catenina/genética
12.
BMC Genomics ; 14: 95, 2013 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-23402223

RESUMO

BACKGROUND: A classical example of repeated speciation coupled with ecological diversification is the evolution of 14 closely related species of Darwin's (Galápagos) finches (Thraupidae, Passeriformes). Their adaptive radiation in the Galápagos archipelago took place in the last 2-3 million years and some of the molecular mechanisms that led to their diversification are now being elucidated. Here we report evolutionary analyses of genome of the large ground finch, Geospiza magnirostris. RESULTS: 13,291 protein-coding genes were predicted from a 991.0 Mb G. magnirostris genome assembly. We then defined gene orthology relationships and constructed whole genome alignments between the G. magnirostris and other vertebrate genomes. We estimate that 15% of genomic sequence is functionally constrained between G. magnirostris and zebra finch. Genic evolutionary rate comparisons indicate that similar selective pressures acted along the G. magnirostris and zebra finch lineages suggesting that historical effective population size values have been similar in both lineages. 21 otherwise highly conserved genes were identified that each show evidence for positive selection on amino acid changes in the Darwin's finch lineage. Two of these genes (Igf2r and Pou1f1) have been implicated in beak morphology changes in Darwin's finches. Five of 47 genes showing evidence of positive selection in early passerine evolution have cilia related functions, and may be examples of adaptively evolving reproductive proteins. CONCLUSIONS: These results provide insights into past evolutionary processes that have shaped G. magnirostris genes and its genome, and provide the necessary foundation upon which to build population genomics resources that will shed light on more contemporaneous adaptive and non-adaptive processes that have contributed to the evolution of the Darwin's finches.


Assuntos
Evolução Molecular , Genômica , Passeriformes/genética , Adaptação Fisiológica , Animais , Genética Populacional , Modelos Genéticos , Passeriformes/fisiologia , Homologia de Sequência do Ácido Nucleico
13.
Evol Dev ; 15(6): 393-405, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24261441

RESUMO

Few skeletal structures are as informative of the adaptive natural history of vertebrate animals as their teeth. Understanding principles of tooth development is key to understanding evolution of the vertebrate dentition in general and emergence of multiple specialized tooth types in particular. Morphological and phylogenetic considerations suggest that crocodilians have the most primitive mode of dentition within extant tetrapods, displaying simple, conical, socketed, and continuously replaced teeth. Previous histological studies revealed several dental fates, including functional and non-functional teeth (rudiments) in the developing alligator embryos. We analyze expression of key odontogenic regulators and markers to better characterize the molecular patterning of crocodilian dentition. Importantly, we demonstrate that the morphologically distinct tooth types in Alligator mississippiensis are distinguishable by differences in their developmental programs. We also present evidence showing that tooth maturation is accompanied by dynamic gene expression in the epithelial and mesenchymal cells involved in tooth development. Our data reveal a significant morphological and genetic variation in early dental fates. We believe that this underlying developmental variation reflects modularity, or the ability of teeth to develop semi-autonomously along the alligator jaw. We propose that such modularity may have been a crucial for adaptive evolution within Amniota, allowing for the progressive modifications to tooth replacement, number, and shape.


Assuntos
Jacarés e Crocodilos/crescimento & desenvolvimento , Evolução Biológica , Dente/crescimento & desenvolvimento , Jacarés e Crocodilos/anatomia & histologia , Jacarés e Crocodilos/genética , Jacarés e Crocodilos/fisiologia , Animais , Receptor Edar/genética , Receptor Edar/metabolismo , Fator 4 de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/genética , Organogênese , Dente/anatomia & histologia , Dente/metabolismo
14.
Evol Dev ; 15(5): 317-25, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24074278

RESUMO

The turtle shell represents a unique modification of the ancestral tetrapod body plan. The homologies of its approximately 50 bones have been the subject of debate for more than 200 years. Although most of those homologies are now firmly established, the evolutionary origin of the dorsal median nuchal bone of the carapace remains unresolved. We propose a novel hypothesis in which the nuchal is derived from the paired, laterally positioned cleithra-dorsal elements of the ancestral tetrapod pectoral girdle that are otherwise retained among extant tetrapods only in frogs. This hypothesis is supported by origin of the nuchal as paired, mesenchymal condensations likely derived from the neural crest followed by a unique two-stage pattern of ossification. Further support is drawn from the establishment of the nuchal as part of a highly conserved "muscle scaffold" wherein the cleithrum (and its evolutionary derivatives) serves as the origin of the Musculus trapezius. Identification of the nuchal as fused cleithra is congruent with its general spatial relationships to other elements of the shoulder girdle in the adult morphology of extant turtles, and it is further supported by patterns of connectivity and transformations documented by critical fossils from the turtle stem group. The cleithral derivation of the nuchal implies an anatomical reorganization of the pectoral girdle in which the dermal portion of the girdle was transformed from a continuous lateral-ventral arc into separate dorsal and ventral components. This transformation involved the reduction and eventual loss of the scapular rami of the clavicles along with the dorsal and superficial migration of the cleithra, which then fused with one another and became incorporated into the carapace.


Assuntos
Exoesqueleto/anatomia & histologia , Osso e Ossos/anatomia & histologia , Tartarugas/anatomia & histologia , Animais , Evolução Biológica , Embrião não Mamífero/anatomia & histologia , Fósseis , Filogenia , Tartarugas/genética
15.
Nature ; 442(7102): 563-7, 2006 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-16885984

RESUMO

A classic textbook example of adaptive radiation under natural selection is the evolution of 14 closely related species of Darwin's finches (Fringillidae, Passeriformes), whose primary diversity lies in the size and shape of their beaks. Thus, ground finches have deep and wide beaks, cactus finches have long and pointed beaks (low depth and narrower width), and warbler finches have slender and pointed beaks, reflecting differences in their respective diets. Previous work has shown that even small differences in any of the three major dimensions (depth, width and length) of the beak have major consequences for the overall fitness of the birds. Recently we used a candidate gene approach to explain one pathway involved in Darwin's finch beak morphogenesis. However, this type of analysis is limited to molecules with a known association with craniofacial and/or skeletogenic development. Here we use a less constrained, complementary DNA microarray analysis of the transcripts expressed in the beak primordia to find previously unknown genes and pathways whose expression correlates with specific beak morphologies. We show that calmodulin (CaM), a molecule involved in mediating Ca2+ signalling, is expressed at higher levels in the long and pointed beaks of cactus finches than in more robust beak types of other species. We validated this observation with in situ hybridizations. When this upregulation of the CaM-dependent pathway is artificially replicated in the chick frontonasal prominence, it causes an elongation of the upper beak, recapitulating the beak morphology of the cactus finches. Our results indicate that local upregulation of the CaM-dependent pathway is likely to have been a component of the evolution of Darwin's finch species with elongated beak morphology and provide a mechanistic explanation for the independence of beak evolution along different axes. More generally, our results implicate the CaM-dependent pathway in the developmental regulation of craniofacial skeletal structures.


Assuntos
Bico/anatomia & histologia , Evolução Biológica , Calmodulina/metabolismo , Tentilhões/anatomia & histologia , Tentilhões/metabolismo , Animais , Bico/embriologia , Bico/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Calmodulina/genética , Embrião de Galinha , Análise por Conglomerados , Tentilhões/classificação , Tentilhões/genética , Regulação da Expressão Gênica , Modelos Biológicos , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Transdução de Sinais
16.
Anat Rec (Hoboken) ; 305(10): 2838-2853, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34694063

RESUMO

The dorsoventrally flattened skull typifies extant Crocodylia perhaps more than any other anatomical feature and is generally considered an adaptation for semi-aquatic feeding. Although the evolutionary origins of caniofacial flattening have been extensively studied, the developmental origins have yet to be explored. To understand how the skull table and platyrostral snout develop, we quantified embryonic development and post-hatching growth (ontogeny) of the crocodylian skull in lateral view using geometric morphometrics. Our dataset (n = 103) includes all but one extant genus and all of the major ecomorphs, including the extremely slender-snouted Gavialis and Tomistoma. Our analysis reveals that the embryonic development of the flattened skull is remarkably similar across ecomorphs, including the presence of a conserved initial embryonic skull shape, similar to prior analysis of dorsal snout shape. Although differences during posthatching ontogeny are recovered among ecomorphs, embryonic patterns are not distinct, revealing an important shift in developmental rate near hatching. In particular, the flattened skull table is achieved by the end of embryonic development with no changes after hatching. Further, the rotation of skull roof and facial bones during development is critical for the stereotypical flatness of the crocodylian skull. Our results suggest selection on hatchling performance and constraints on embryonic skull shape may have been important in this pattern of developmental conservation. The appearance of aspects of cranial flatness among Jurassic stem crocodylians suggests key aspects of these cranial developmental patterns may have been conserved for over 200 million years.


Assuntos
Jacarés e Crocodilos , Animais , Evolução Biológica , Cabeça , Filogenia , Crânio/anatomia & histologia
17.
Sci Adv ; 8(27): eabm5982, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35857449

RESUMO

Recent adaptive radiations are models for investigating mechanisms contributing to the evolution of biodiversity. An unresolved question is the relative importance of new mutations, ancestral variants, and introgressive hybridization for phenotypic evolution and speciation. Here, we address this issue using Darwin's finches and investigate the genomic architecture underlying their phenotypic diversity. Admixture mapping for beak and body size in the small, medium, and large ground finches revealed 28 loci showing strong genetic differentiation. These loci represent ancestral haplotype blocks with origins predating speciation events during the Darwin's finch radiation. Genes expressed in the developing beak are overrepresented in these genomic regions. Ancestral haplotypes constitute genetic modules for selection and act as key determinants of the unusual phenotypic diversity of Darwin's finches. Such ancestral haplotype blocks can be critical for how species adapt to environmental variability and change.


Assuntos
Tentilhões , Passeriformes , Animais , Bico , Tentilhões/genética , Genômica , Haplótipos
18.
BMC Genomics ; 12: 554, 2011 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-22077994

RESUMO

BACKGROUND: Comparative studies of amniotes have been hindered by a dearth of reptilian molecular sequences. With the genomic assembly of the green anole, Anolis carolinensis available, non-avian reptilian genes can now be compared to mammalian, avian, and amphibian homologs. Furthermore, with more than 350 extant species in the genus Anolis, anoles are an unparalleled example of tetrapod genetic diversity and divergence. As an important ecological, genetic and now genomic reference, it is imperative to develop a standardized Anolis gene nomenclature alongside associated vocabularies and other useful metrics. RESULTS: Here we report the formation of the Anolis Gene Nomenclature Committee (AGNC) and propose a standardized evolutionary characterization code that will help researchers to define gene orthology and paralogy with tetrapod homologs, provide a system for naming novel genes in Anolis and other reptiles, furnish abbreviations to facilitate comparative studies among the Anolis species and related iguanid squamates, and classify the geographical origins of Anolis subpopulations. CONCLUSIONS: This report has been generated in close consultation with members of the Anolis and genomic research communities, and using public database resources including NCBI and Ensembl. Updates will continue to be regularly posted to new research community websites such as lizardbase. We anticipate that this standardized gene nomenclature will facilitate the accessibility of reptilian sequences for comparative studies among tetrapods and will further serve as a template for other communities in their sequencing and annotation initiatives.


Assuntos
Genômica/normas , Lagartos/genética , Terminologia como Assunto , Animais , Sequência Conservada , Elementos de DNA Transponíveis , Evolução Molecular , Marcadores Genéticos , Lagartos/classificação , Repetições de Microssatélites , Sequências Repetitivas de Ácido Nucleico
19.
Trends Genet ; 24(7): 353-60, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18514356

RESUMO

It is increasingly clear that additional 'model' systems are needed to elucidate the genetic and developmental basis of organismal diversity. Whereas model system development previously required enormous investment, recent advances including the decreasing cost of DNA sequencing and the power of reverse genetics to study gene function are greatly facilitating the process. In this review, we consider two aspects of the development of new genetic model systems: first, the types of questions being advanced using these new models; and second, the essential characteristics and molecular tools for new models, depending on the research focus. We hope that researchers will be inspired to explore this array of emerging models and even consider developing new molecular tools for their own favorite organism.


Assuntos
Modelos Biológicos , Modelos Genéticos , Animais , Pesquisa
20.
Curr Top Dev Biol ; 141: 241-277, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33602490

RESUMO

Amniotes, a clade of terrestrial vertebrates, which includes all of the descendants of the last common ancestor of the reptiles (including dinosaurs and birds) and mammals, is one of the most successful group of animals on our planet. In addition to having an egg equipped with an amnion, an adaptation to lay eggs on land, amniotes possess a number of other major morphological characteristics. Chief among them is the amniote skull, which can be classified into several major types distinguished by the presence and number of temporal fenestrae (windows) in the posterior part. Amniotes evolved from ancestors who possessed a skull composed of a complex mosaic of small bones separated by sutures. Changes in skull composition underlie much of the large-scale evolution of amniotes with many lineages showing a trend in reduction of cranial elements known as the "Williston's Law." The skull of amniotes is also arranged into a set of modules of closely co-evolving bones as revealed by modularity and integration tests. One of the most consistently recovered and at the same time most versatile modules is the "face," anatomically defined as the anterior portion of the head. The faces of amniotes display extraordinary amount of variation, with many adaptive radiations showing parallel tendencies in facial scaling, e.g., changes in length or width. This review explores the natural history of the amniote face and discusses how a better understanding of its anatomy and developmental biology helps to explain the outstanding scale of adaptive facial diversity. We propose a model for facial evolution in the amniotes, based on the differential rate of cranial neural crest cell proliferation and the timing of their skeletal differentiation.


Assuntos
Evolução Biológica , Face/anatomia & histologia , Crânio/anatomia & histologia , Vertebrados , Animais , Padronização Corporal , Face/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Crista Neural/citologia , Crânio/embriologia , Vertebrados/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA