Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 2190, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35449159

RESUMO

Electronic textiles capable of sensing, powering, and communication can be used to non-intrusively monitor human health during daily life. However, achieving these functionalities with clothing is challenging because of limitations in the electronic performance, flexibility and robustness of the underlying materials, which must endure repeated mechanical, thermal and chemical stresses during daily use. Here, we demonstrate electronic textile systems with functionalities in near-field powering and communication created by digital embroidery of liquid metal fibers. Owing to the unique electrical and mechanical properties of the liquid metal fibers, these electronic textiles can conform to body surfaces and establish robust wireless connectivity with nearby wearable or implantable devices, even during strenuous exercise. By transferring optimized electromagnetic patterns onto clothing in this way, we demonstrate a washable electronic shirt that can be wirelessly powered by a smartphone and continuously monitor axillary temperature without interfering with daily activities.


Assuntos
Dispositivos Eletrônicos Vestíveis , Eletrônica , Humanos , Metais , Monitorização Fisiológica , Têxteis
2.
iScience ; 24(11): 103284, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34765913

RESUMO

Wearable optoelectronic devices can interface with the skin for applications in continuous health monitoring and light-based therapy. Measurement of the thermal effect of light on skin is often critical to track physiological parameters and control light delivery. However, accurate measurement of light-induced thermal effects is challenging because conventional sensors cannot be placed on the skin without obstructing light delivery. Here, we report a wearable optoelectronic patch integrated with a transparent nanowire sensor that provides light delivery and thermal monitoring at the same location. We achieve fabrication of a transparent silver nanowire network with >92% optical transmission that provides thermoresistive sensing of skin temperature. By integrating the sensor in a wireless optoelectronic patch, we demonstrate closed-loop regulation of light delivery as well as thermal characterization of blood flow. This light delivery and thermal monitoring approach may open opportunities for wearable devices in light-based diagnostics and therapies.

3.
Sci Adv ; 7(47): eabj1617, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34797719

RESUMO

The confluence of wireless technology and biosensors offers the possibility to detect and manage medical conditions outside of clinical settings. Wound infections represent a major clinical challenge in which timely detection is critical for effective interventions, but this is currently hindered by the lack of a monitoring technology that can interface with wounds, detect pathogenic bacteria, and wirelessly transmit data. Here, we report a flexible, wireless, and battery-free sensor that provides smartphone-based detection of wound infection using a bacteria-responsive DNA hydrogel. The engineered DNA hydrogels respond selectively to deoxyribonucleases associated with pathogenic bacteria through tunable dielectric changes, which can be wirelessly detected using near-field communication. In a mouse acute wound model, we demonstrate that the wireless sensor can detect physiologically relevant amounts of Staphylococcus aureus even before visible manifestation of infection. These results demonstrate strategies for continuous infection monitoring, which may facilitate improved management of surgical or chronic wounds.

4.
Nat Commun ; 11(1): 444, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31974376

RESUMO

Networks of sensors placed on the skin can provide continuous measurement of human physiological signals for applications in clinical diagnostics, athletics and human-machine interfaces. Wireless and battery-free sensors are particularly desirable for reliable long-term monitoring, but current approaches for achieving this mode of operation rely on near-field technologies that require close proximity (at most a few centimetres) between each sensor and a wireless readout device. Here, we report near-field-enabled clothing capable of establishing wireless power and data connectivity between multiple distant points around the body to create a network of battery-free sensors interconnected by proximity to functional textile patterns. Using computer-controlled embroidery of conductive threads, we integrate clothing with near-field-responsive patterns that are completely fabric-based and free of fragile silicon components. We demonstrate the utility of the networked system for real-time, multi-node measurement of spinal posture as well as continuous sensing of temperature and gait during exercise.


Assuntos
Vestuário , Monitorização Ambulatorial/instrumentação , Monitorização Ambulatorial/métodos , Tecnologia sem Fio , Fontes de Energia Elétrica , Fenômenos Eletromagnéticos , Desenho de Equipamento , Exercício Físico/fisiologia , Humanos , Joelho , Postura/fisiologia , Coluna Vertebral/fisiologia , Temperatura , Caminhada/fisiologia , Tecnologia sem Fio/instrumentação
5.
Adv Mater ; 32(21): e2000351, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32285545

RESUMO

Living organisms are capable of sensing and responding to their environment through reflex-driven pathways. The grand challenge for mimicking such natural intelligence in miniature robots lies in achieving highly integrated body functionality, actuation, and sensing mechanisms. Here, somatosensory light-driven robots (SLiRs) based on a smart thin-film composite tightly integrating actuation and multisensing are presented. The SLiR subsumes pyro/piezoelectric responses and piezoresistive strain sensation under a photoactuator transducer, enabling simultaneous yet non-interfering perception of its body temperature and actuation deformation states. The compact thin film, when combined with kirigami, facilitates rapid customization of low-profile structures for morphable, mobile, and multiple robotic functionality. For example, an SLiR walker can move forward on different surfaces, while providing feedback on its detailed locomotive gaits and subtle terrain textures, and an SLiR anthropomorphic hand shows bodily senses arising from concerted mechanoreception, thermoreception, proprioception, and photoreception. Untethered operation with an SLiR centipede is also demonstrated, which can execute distinct, localized body functions from directional motility, multisensing, to wireless human and environment interactions. This SLiR, which is capable of integrated perception and motility, offers new opportunities for developing diverse intelligent behaviors in soft robots.

6.
ACS Nano ; 14(9): 11860-11875, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32790337

RESUMO

Emerging soft exoskeletons pose urgent needs for high-performance strain sensors with tunable linear working windows to achieve a high-precision control loop. Still, the state-of-the-art strain sensors require further advances to simultaneously satisfy multiple sensing parameters, including high sensitivity, reliable linearity, and tunable strain ranges. Besides, a wireless sensing system is highly desired to enable facile monitoring of soft exoskeleton in real time, but is rarely investigated. Herein, wireless Ti3C2Tx MXene strain sensing systems were fabricated by developing hierarchical morphologies on piezoresistive layers and incorporating regulatory resistors into circuit designs as well as integrating the sensing circuit with near-field communication (NFC) technology. The wireless MXene sensor system can simultaneously achieve an ultrahigh sensitivity (gauge factor ≥ 14,000) and reliable linearity (R2 ≈ 0.99) within multiple user-designated high-strain working windows (130% to ≥900%). Additionally, the wireless sensing system can collectively monitor the multisegment exoskeleton actuations through a single database channel, largely reducing the data processing loading. We finally integrate the wireless, battery-free MXene e-skin with various soft exoskeletons to monitor the complex actuations that assist hand/leg rehabilitation.


Assuntos
Exoesqueleto Energizado , Titânio , Fontes de Energia Elétrica , Monitorização Fisiológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA