Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nature ; 592(7855): 596-600, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33762729

RESUMO

Mutations in the X-linked gene MECP2 cause Rett syndrome, a progressive neurological disorder in which children develop normally for the first one or two years of life before experiencing profound motor and cognitive decline1-3. At present there are no effective treatments for Rett syndrome, but we hypothesized that using the period of normal development to strengthen motor and memory skills might confer some benefit. Here we find, using a mouse model of Rett syndrome, that intensive training beginning in the presymptomatic period dramatically improves the performance of specific motor and memory tasks, and significantly delays the onset of symptoms. These benefits are not observed when the training begins after symptom onset. Markers of neuronal activity and chemogenetic manipulation reveal that task-specific neurons that are repeatedly activated during training develop more dendritic arbors and have better neurophysiological responses than those in untrained animals, thereby enhancing their functionality and delaying symptom onset. These results provide a rationale for genetic screening of newborns for Rett syndrome, as presymptomatic intervention might mitigate symptoms or delay their onset. Similar strategies should be studied for other childhood neurological disorders.


Assuntos
Melhoramento Biomédico/métodos , Modelos Animais de Doenças , Sintomas Prodrômicos , Síndrome de Rett/prevenção & controle , Síndrome de Rett/fisiopatologia , Animais , Eletrofisiologia , Feminino , Masculino , Camundongos , Teste do Labirinto Aquático de Morris , Neurônios/fisiologia , Desempenho Psicomotor , Teste de Desempenho do Rota-Rod , Aprendizagem Espacial , Fatores de Tempo
2.
Hum Mol Genet ; 29(13): 2109-2123, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32186706

RESUMO

Cobalamin C (cblC) deficiency, the most common inborn error of intracellular cobalamin metabolism, is caused by mutations in MMACHC, a gene responsible for the processing and intracellular trafficking of vitamin B12. This recessive disorder is characterized by a failure to metabolize cobalamin into adenosyl- and methylcobalamin, which results in the biochemical perturbations of methylmalonic acidemia, hyperhomocysteinemia and hypomethioninemia caused by the impaired activity of the downstream enzymes, methylmalonyl-CoA mutase and methionine synthase. Cobalamin C deficiency can be accompanied by a wide spectrum of clinical manifestations, including progressive blindness, and, in mice, manifests with very early embryonic lethality. Because zebrafish harbor a full complement of cobalamin metabolic enzymes, we used genome editing to study the loss of mmachc function and to develop the first viable animal model of cblC deficiency. mmachc mutants survived the embryonic period but perished in early juvenile life. The mutants displayed the metabolic and clinical features of cblC deficiency including methylmalonic acidemia, severe growth retardation and lethality. Morphologic and metabolic parameters improved when the mutants were raised in water supplemented with small molecules used to treat patients, including hydroxocobalamin, methylcobalamin, methionine and betaine. Furthermore, mmachc mutants bred to express rod and/or cone fluorescent reporters, manifested a retinopathy and thin optic nerves (ON). Expression analysis using whole eye mRNA revealed the dysregulation of genes involved in phototransduction and cholesterol metabolism. Zebrafish with mmachc deficiency recapitulate the several of the phenotypic and biochemical features of the human disorder, including ocular pathology, and show a response to established treatments.


Assuntos
Proteínas de Transporte/genética , Morfogênese/genética , Deficiência de Vitamina B 12/genética , Vitamina B 12/genética , Proteínas de Peixe-Zebra/genética , Animais , Homocistinúria/genética , Homocistinúria/patologia , Humanos , Camundongos , Mutação/genética , Nervo Óptico/crescimento & desenvolvimento , Nervo Óptico/patologia , Oxirredutases/genética , Retina/crescimento & desenvolvimento , Retina/metabolismo , Vitamina B 12/análogos & derivados , Vitamina B 12/metabolismo , Deficiência de Vitamina B 12/metabolismo , Deficiência de Vitamina B 12/patologia , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
3.
J Neurophysiol ; 115(6): 2701-4, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26581865

RESUMO

Circadian rhythms coordinate cyclical behavioral and physiological changes in most organisms. In humans, this biological clock is located within the suprachiasmatic nucleus (SCN) of the hypothalamus and consists of a heterogeneous neuron population characterized by their enriched expression of various neuropeptides. As highlighted here, Fan et al. (J Neurosci 35: 1905-1029, 2015) developed an elegant experimental system to investigate the synaptic properties of vasoactive intestinal peptide (VIP)-expressing neurons between day and night, and further delineate their broader architecture and function within the SCN.


Assuntos
Núcleo Supraquiasmático , Peptídeo Intestinal Vasoativo , Relógios Biológicos , Ritmo Circadiano , Humanos , Neurônios , Sinapses
4.
Am J Hum Genet ; 93(3): 506-14, 2013 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-24011988

RESUMO

Derivatives of vitamin B12 (cobalamin) are essential cofactors for enzymes required in intermediary metabolism. Defects in cobalamin metabolism lead to disorders characterized by the accumulation of methylmalonic acid and/or homocysteine in blood and urine. The most common inborn error of cobalamin metabolism, combined methylmalonic acidemia and hyperhomocysteinemia, cblC type, is caused by mutations in MMACHC. However, several individuals with presumed cblC based on cellular and biochemical analysis do not have mutations in MMACHC. We used exome sequencing to identify the genetic basis of an X-linked form of combined methylmalonic acidemia and hyperhomocysteinemia, designated cblX. A missense mutation in a global transcriptional coregulator, HCFC1, was identified in the index case. Additional male subjects were ascertained through two international diagnostic laboratories, and 13/17 had one of five distinct missense mutations affecting three highly conserved amino acids within the HCFC1 kelch domain. A common phenotype of severe neurological symptoms including intractable epilepsy and profound neurocognitive impairment, along with variable biochemical manifestations, was observed in all affected subjects compared to individuals with early-onset cblC. The severe reduction in MMACHC mRNA and protein within subject fibroblast lines suggested a role for HCFC1 in transcriptional regulation of MMACHC, which was further supported by the identification of consensus HCFC1 binding sites in MMACHC. Furthermore, siRNA-mediated knockdown of HCFC1 expression resulted in the coordinate downregulation of MMACHC mRNA. This X-linked disorder demonstrates a distinct disease mechanism by which transcriptional dysregulation leads to an inborn error of metabolism with a complex clinical phenotype.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Genes Ligados ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Fator C1 de Célula Hospedeira/genética , Hiper-Homocisteinemia/genética , Mutação/genética , Vitamina B 12/genética , Idade de Início , Sequência de Aminoácidos , Sítios de Ligação , Análise Mutacional de DNA , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Predisposição Genética para Doença , Células HEK293 , Fator C1 de Célula Hospedeira/química , Humanos , Lactente , Masculino , Dados de Sequência Molecular , Ligação Proteica/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas Repressoras/metabolismo
5.
Elife ; 102021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33494858

RESUMO

Rett syndrome is a devastating childhood neurological disorder caused by mutations in MECP2. Of the many symptoms, motor deterioration is a significant problem for patients. In mice, deleting Mecp2 from the cortex or basal ganglia causes motor dysfunction, hypoactivity, and tremor, which are abnormalities observed in patients. Little is known about the function of Mecp2 in the cerebellum, a brain region critical for motor function. Here we show that deleting Mecp2 from the cerebellum, but not from its neuronal subtypes, causes a delay in motor learning that is overcome by additional training. We observed irregular firing rates of Purkinje cells and altered heterochromatin architecture within the cerebellum of knockout mice. These findings demonstrate that the motor deficits present in Rett syndrome arise, in part, from cerebellar dysfunction. For Rett syndrome and other neurodevelopmental disorders, our results highlight the importance of understanding which brain regions contribute to disease phenotypes.


Assuntos
Cerebelo/química , Deleção de Genes , Aprendizagem , Proteína 2 de Ligação a Metil-CpG/genética , Atividade Motora/genética , Neurônios/química , Síndrome de Rett/genética , Animais , Modelos Animais de Doenças , Humanos , Masculino , Proteína 2 de Ligação a Metil-CpG/deficiência , Camundongos , Camundongos Knockout , Fatores de Tempo
6.
PLoS One ; 7(1): e28936, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22279524

RESUMO

The Clinic for Special Children (CSC) has integrated biochemical and molecular methods into a rural pediatric practice serving Old Order Amish and Mennonite (Plain) children. Among the Plain people, we have used single nucleotide polymorphism (SNP) microarrays to genetically map recessive disorders to large autozygous haplotype blocks (mean = 4.4 Mb) that contain many genes (mean = 79). For some, uninformative mapping or large gene lists preclude disease-gene identification by Sanger sequencing. Seven such conditions were selected for exome sequencing at the Broad Institute; all had been previously mapped at the CSC using low density SNP microarrays coupled with autozygosity and linkage analyses. Using between 1 and 5 patient samples per disorder, we identified sequence variants in the known disease-causing genes SLC6A3 and FLVCR1, and present evidence to strongly support the pathogenicity of variants identified in TUBGCP6, BRAT1, SNIP1, CRADD, and HARS. Our results reveal the power of coupling new genotyping technologies to population-specific genetic knowledge and robust clinical data.


Assuntos
Mapeamento Cromossômico/métodos , Exoma/genética , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos , Aminoacil-tRNA Sintetases , Amish/genética , Proteína Adaptadora de Sinalização CRADD , Criança , Pré-Escolar , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Epilepsia/genética , Etnicidade/genética , Estudos de Associação Genética/métodos , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana Transportadoras/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Nucleares/genética , Transtornos Parkinsonianos/genética , Proteínas de Ligação a RNA , Receptores Virais/genética , Convulsões/genética , Síndromes de Usher/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA