RESUMO
BACKGROUND: Any method that de novo predicts protein function should do better than random. More challenging, it also ought to outperform simple homology-based inference. METHODS: Here, we describe a few methods that predict protein function exclusively through homology. Together, they set the bar or lower limit for future improvements. RESULTS AND CONCLUSIONS: During the development of these methods, we faced two surprises. Firstly, our most successful implementation for the baseline ranked very high at CAFA1. In fact, our best combination of homology-based methods fared only slightly worse than the top-of-the-line prediction method from the Jones group. Secondly, although the concept of homology-based inference is simple, this work revealed that the precise details of the implementation are crucial: not only did the methods span from top to bottom performers at CAFA, but also the reasons for these differences were unexpected. In this work, we also propose a new rigorous measure to compare predicted and experimental annotations. It puts more emphasis on the details of protein function than the other measures employed by CAFA and may best reflect the expectations of users. Clearly, the definition of proper goals remains one major objective for CAFA.
Assuntos
Proteínas/fisiologia , Homologia de Sequência de Aminoácidos , Algoritmos , Proteínas/genéticaRESUMO
BACKGROUND: Non-synonymous single nucleotide polymorphisms (nsSNPs) alter the protein sequence and can cause disease. The impact has been described by reliable experiments for relatively few mutations. Here, we study predictions for functional impact of disease-annotated mutations from OMIM, PMD and Swiss-Prot and of variants not linked to disease. RESULTS: Most disease-causing mutations were predicted to impact protein function. More surprisingly, the raw predictions scores for disease-causing mutations were higher than the scores for the function-altering data set originally used for developing the prediction method (here SNAP). We might expect that diseases are caused by change-of-function mutations. However, it is surprising how well prediction methods developed for different purposes identify this link. Conversely, our predictions suggest that the set of nsSNPs not currently linked to diseases contains very few strong disease associations to be discovered. CONCLUSIONS: Firstly, annotations of disease-causing nsSNPs are on average so reliable that they can be used as proxies for functional impact. Secondly, disease-causing nsSNPs can be identified very well by methods that predict the impact of mutations on protein function. This implies that the existing prediction methods provide a very good means of choosing a set of suspect SNPs relevant for disease.