Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 621(7978): 330-335, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37587345

RESUMO

Projected responses of ocean net primary productivity to climate change are highly uncertain1. Models suggest that the climate sensitivity of phytoplankton nutrient limitation in the low-latitude Pacific Ocean plays a crucial role1-3, but this is poorly constrained by observations4. Here we show that changes in physical forcing drove coherent fluctuations in the strength of equatorial Pacific iron limitation through multiple El Niño/Southern Oscillation (ENSO) cycles, but that this was overestimated twofold by a state-of-the-art climate model. Our assessment was enabled by first using a combination of field nutrient-addition experiments, proteomics and above-water hyperspectral radiometry to show that phytoplankton physiological responses to iron limitation led to approximately threefold changes in chlorophyll-normalized phytoplankton fluorescence. We then exploited the >18-year satellite fluorescence record to quantify climate-induced nutrient limitation variability. Such synoptic constraints provide a powerful approach for benchmarking the realism of model projections of net primary productivity to climate changes.


Assuntos
Modelos Climáticos , El Niño Oscilação Sul , Ferro , Clorofila/metabolismo , Mudança Climática , Fluorescência , Ferro/metabolismo , Nutrientes/metabolismo , Oceano Pacífico , Fitoplâncton/metabolismo , Proteômica , Radiometria , Imagens de Satélites
2.
J Chem Inf Model ; 64(16): 6492-6505, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39119989

RESUMO

We developed a Target Plastic Model (TPM) to estimate the critical plastic burden of organic toxicants in five types of plastics, namely, polydimethylsiloxane (PDMS), polyoxymethylene (POM), polyacrylate (PA), low-density polyethylene (LDPE), and polyurethane ester (PU), following the Target Lipid Model (TLM) framework. By substituting the lipid-water partition coefficient in the TLM with plastic-water partition coefficients to create TPM, we demonstrated that the biomimetic nature of these plastic phases allows for the calculation of critical plastic burdens of toxicants, similar to the notion of critical lipid burdens in TLM. Following this approach, the critical plastic burdens of baseline (n = 115), less-inert (n = 73), and reactive (n = 75) toxicants ranged from 0.17 to 51.33, 0.04 to 26.62, and 1.00 × 10-6 to 6.78 × 10-4 mmol/kg of plastic, respectively. Our study showed that PDMS, PA, POM, PE, and PU are similar to biomembranes in mimicking the passive exchange of chemicals with the water phase. Using the TPM, median lethal concentration (LC50) values for fish exposed to baseline toxicants were predicted, and the results agreed with experimental values, with RMSE ranging from 0.311 to 0.538 log unit. Similarly, for the same data set of baseline toxicants, other widely used models, including the TLM (RMSE: 0.32-0.34), ECOSAR (RMSE: 0.35), and the Abraham Solvation Model (ASM; RMSE: 0.31), demonstrated comparable agreement between experimental and predicted values. For less inert chemicals, predictions were within a factor of 5 of experimental values. Comparatively, ASM and ECOSAR showed predictions within a factor of 2 and 3, respectively. The TLM based on phospholipid had predictions within a factor of 3 and octanol within a factor of 4, indicating that the TPM's performance for less inert chemicals is comparable to these established models. Unlike these methods, the TPM requires only the knowledge of plastic bound concentration for a given plastic phase to calculate baseline toxic units, bypassing the need for extensive LC50 and plastic-water partition coefficient data, which are often limited for emerging chemicals. Taken together, the TPM can provide valuable insights into the toxicities of chemicals associated with environmental plastic phases, assisting in selecting the best polymeric phase for passive sampling and designing better passive dosing techniques for toxicity experiments.


Assuntos
Plásticos , Poluentes Químicos da Água , Plásticos/química , Plásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/química , Água/química , Animais
3.
Anal Bioanal Chem ; 415(15): 2989-2998, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36922436

RESUMO

Isolation and detection of microplastics (MP) in marine samples is extremely cost- and labor-intensive, limiting the speed and amount of data that can be collected. In the current work, we describe rapid measurement of net-collected MPs (net mesh size 300 µm) using a benchtop near-infrared hyperspectral imaging system during a research expedition to the subtropical North Atlantic gyre. Suspected plastic particles were identified microscopically and mounted on a black adhesive background. Particles were imaged with a Specim FX17 near-infrared linescan camera and a motorized stage. A particle mapping procedure was built on existing edge-finding algorithms and a polymer identification method developed using spectra from virgin polymer reference materials. This preliminary work focused on polyethylene, polypropylene, and polystyrene as they are less dense than seawater and therefore likely to be found floating in the open ocean. A total of 27 net tows sampled 2534 suspected MP particles that were imaged and analyzed at sea. Approximately 77.1% of particles were identified as polyethylene, followed by polypropylene (9.2%). A small fraction of polystyrene was detected only at one station. Approximately 13.6% of particles were either other plastic polymers or were natural materials visually misidentified as plastics. Particle size distributions for PE and PP particles with a length greater than 1 mm followed an approximate power law relationship with abundance. This method allowed at-sea, near real-time identification of MP polymer types and particle dimensions, and shows great promise for rapid field measurements of microplastics in net-collected samples.

4.
Nature ; 551(7679): 242-246, 2017 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-29088696

RESUMO

Nutrient limitation of oceanic primary production exerts a fundamental control on marine food webs and the flux of carbon into the deep ocean. The extensive boundaries of the oligotrophic sub-tropical gyres collectively define the most extreme transition in ocean productivity, but little is known about nutrient limitation in these zones. Here we present the results of full-factorial nutrient amendment experiments conducted at the eastern boundary of the South Atlantic gyre. We find extensive regions in which the addition of nitrogen or iron individually resulted in no significant phytoplankton growth over 48 hours. However, the addition of both nitrogen and iron increased concentrations of chlorophyll a by up to approximately 40-fold, led to diatom proliferation, and reduced community diversity. Once nitrogen-iron co-limitation had been alleviated, the addition of cobalt or cobalt-containing vitamin B12 could further enhance chlorophyll a yields by up to threefold. Our results suggest that nitrogen-iron co-limitation is pervasive in the ocean, with other micronutrients also approaching co-deficiency. Such multi-nutrient limitations potentially increase phytoplankton community diversity.


Assuntos
Ferro/metabolismo , Nitrogênio/metabolismo , Fitoplâncton/metabolismo , Água do Mar/química , Oceano Atlântico , Biodiversidade , Clorofila/metabolismo , Clorofila A , Cobalto/metabolismo , Cobalto/farmacologia , Diatomáceas/efeitos dos fármacos , Diatomáceas/crescimento & desenvolvimento , Diatomáceas/metabolismo , Cadeia Alimentar , Ferro/farmacologia , Nitrogênio/farmacologia , Fitoplâncton/efeitos dos fármacos , Fitoplâncton/crescimento & desenvolvimento , Água do Mar/análise , Vitamina B 12/metabolismo , Vitamina B 12/farmacologia
5.
Sensors (Basel) ; 23(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36850720

RESUMO

Autonomous on-site monitoring of orthophosphate (PO43-), an important nutrient for primary production in natural waters, is urgently needed. Here, we report on the development and validation of an on-site autonomous electrochemical analyzer for PO43- in seawater. The approach is based on the use of flow injection analysis in conjunction with a dual electrochemical cell (i.e., a bi-potentiostat detector (FIA-DECD) that uses two working electrodes sharing the same reference and counter electrode. The two working electrodes are used (molybdate/carbon paste electrode (CPE) and CPE) to correct for matrix effects. Optimization of squarewave voltammetry parameters (including step potential, amplitude, and frequency) was undertaken to enhance analytical sensitivity. Possible interferences from non-ionic surfactants and humic acid were investigated. The limit of quantification in artificial seawater (30 g/L NaCl, pH 0.8) was 0.014 µM for a linear concentration range of 0.02-3 µM. The system used a Python script for operation and data processing. The analyzer was tested for ship-board PO43- determination during a four-day research cruise in the North Sea. The analyzer successfully measured 34 samples and achieved a good correlation (Pearson' R = 0.91) with discretely collected water samples analyzed using a laboratory-based colorimetric reference analyzer.

6.
Sensors (Basel) ; 22(9)2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35591168

RESUMO

Accurate, on-site determinations of macronutrients (phosphate (PO43-), nitrate (NO3-), and silicic acid (H4SiO4)) in seawater in real time are essential to obtain information on their distribution, flux, and role in marine biogeochemical cycles. The development of robust sensors for long-term on-site analysis of macronutrients in seawater is a great challenge. Here, we present improvements of a commercial automated sensor for nutrients (including PO43-, H4SiO4, and NO2- plus NO3-), suitable for a variety of aquatic environments. The sensor uses the phosphomolybdate blue method for PO43-, the silicomolybdate blue method for H4SiO4 and the Griess reagent method for NO2-, modified with vanadium chloride as reducing agent for the determination of NO3-. Here, we report the optimization of analytical conditions, including reaction time for PO43- analysis, complexation time for H4SiO4 analysis, and analyte to reagent ratio for NO3- analysis. The instrument showed wide linear ranges, from 0.2 to 100 µM PO43-, between 0.2 and 100 µM H4SiO4, from 0.5 to 100 µM NO3-, and between 0.4 and 100 µM NO2-, with detection limits of 0.18 µM, 0.15 µM, 0.45 µM, and 0.35 µM for PO43-, H4SiO4, NO3-, and NO2-, respectively. The analyzer showed good precision with a relative standard deviation of 8.9% for PO43-, 4.8% for H4SiO4, and 7.4% for NO2- plus NO3- during routine analysis of certified reference materials (KANSO, Japan). The analyzer performed well in the field during a 46-day deployment on a pontoon in the Kiel Fjord (located in the southwestern Baltic Sea), with a water supply from a depth of 1 m. The system successfully collected 443, 440, and 409 on-site data points for PO43-, Σ(NO3- + NO2-), and H4SiO4, respectively. Time series data agreed well with data obtained from the analysis of discretely collected samples using standard reference laboratory procedures and showed clear correlations with key hydrographic parameters throughout the deployment period.


Assuntos
Nitratos , Nitritos , Nitritos/análise , Dióxido de Nitrogênio , Fosfatos , Água do Mar , Ácido Silícico
7.
Environ Sci Technol ; 55(13): 9372-9383, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34110803

RESUMO

The chemical speciation of iron (Fe) in oceans is influenced by ambient pH, dissolved oxygen, and the concentrations and strengths of the binding sites of dissolved organic matter (DOM). Here, we derived new nonideal competitive adsorption (NICA) constants for Fe(III) binding to marine DOM via pH-Fe titrations. We used the constants to calculate Fe(III) speciation and derive the apparent Fe(III) solubility (SFe(III)app) in the ambient water column across the Peruvian shelf and slope region. We define SFe(III)app as the sum of aqueous inorganic Fe(III) species and Fe(III) bound to DOM at a free Fe (Fe3+) concentration equal to the limiting solubility of Fe hydroxide (Fe(OH)3(s)). A ca. twofold increase in SFe(III)app in the oxygen minimum zone (OMZ) compared to surface waters is predicted. The increase results from a one order of magnitude decrease in H+ concentration which impacts both Fe(III) hydroxide solubility and organic complexation. A correlation matrix suggests that changes in pH have a larger impact on SFe(III)app and Fe(III) speciation than DOM in this region. Using Fe(II) measurements, we calculated ambient DFe(III) and compared the value with the predicted SFe(III)app. The underlying distribution of ambient DFe(III) largely reflected the predicted SFe(III)app, indicating that decreased pH as a result of OMZ intensification and ocean acidification may increase SFe(III)app with potential impacts on surface DFe inventories.


Assuntos
Ferro , Água do Mar , Concentração de Íons de Hidrogênio , Peru , Solubilidade
8.
Environ Sci Technol ; 55(23): 16215-16223, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34766769

RESUMO

The physicochemical characteristics of dissolved organic matter (DOM) strongly influence its interactions with inorganic species such as protons and trace elements in natural waters. We collected water samples at Boknis Eck, a time series station in the Baltic Sea with a low exposure to freshwater inputs, to investigate how seasonal fluctuations impact the proton binding properties of the isolated DOM. We used potentiometric titrations to assess the binding properties of solid-phase extracted DOM (SPE-DOM) over a seasonal cycle. We report and critically analyze the first NICA parameters estimates of carboxylic-like and phenolic-like sites for brackish water SPE-DOM. The total amount of functional groups (QmaxH,tot) showed no seasonal fluctuations and an average value of 136 ± 5.2 mmol·mol C-1. The average proton affinity (logKH) and binding site heterogeneity (m) showed a relatively minor variability for samples obtained between April and September, when the water remained stratified. These results contribute to a better understanding of the ion binding characteristics of DOM in natural brackish waters.


Assuntos
Matéria Orgânica Dissolvida , Prótons , Água Doce , Concentração de Íons de Hidrogênio , Estações do Ano
9.
Anal Bioanal Chem ; 413(27): 6889-6904, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34537865

RESUMO

The extensive use of silver nanoparticles (AgNPs) in consumer products, medicine, and industry leads to their release into the environment. Thus, a characterization of the concentration, size, fate, and toxicity of AgNPs under environmental conditions is required. In this study, we present the characterization and optimization of an asymmetric flow field-flow fractionation (AF4) system coupled with UV/Vis spectrophotometer and dynamic light scattering (DLS) detector as a powerful tool for the size separation and multi-parameter characterization of AgNPs in complex matrices. The hyphenated AF4-UV/Vis-DLS system was first characterized using individual injections of the different size fractions. We used electrostatically stabilized AgNPs of 20-, 50-, and 80-nm nominal diameters coated with lipoic acid. We investigated the effect of applied cross-flows, carrier solutions, focus times, and quantity of injected particles on the nature of the AF4 fractograms and on the integrity of the AgNPs. Best size separation of a 1:1 mixture of 20- and 80-nm AgNPs was achieved using cross-flows of 0.5 and 0.7 mL/min with 1 mM NaCl and 0.05% v/v Mucasol as carrier solutions. We also researched the behavior of AgNPs in natural waters using the hyphenated AF4-UV/Vis-DLS system, under determined optimal conditions. Schematic and photograph of the AF4 setup with numbered hardware devices. Dashed lines represent electrical connections; continuous lines represent fluidic connections. For a better overview, not all fluidic connections between pump/6-way valve (2) and the Eclipse AF4 device (3) are shown in the schematic. The fluorescence detector (FL (7)) was not used in the study presented herein.

10.
Environ Sci Technol ; 53(10): 5652-5660, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30997802

RESUMO

Underwater munitions containing millions of tons of toxic explosives are present worldwide in coastal marine waters as a result of unexploded ordnance and intentional dumping. The dissolution flux of solid explosives following corrosion of metal munition housings controls the exposure of biological receptors to toxic munition compounds (MC), including TNT: 2,4,6-trinitrotoluene, RDX: 1,3,5-trinitro-1,3,5-triazinane, and DNB: 1,3-dinitrobenzene. Very little is known about the dissolution behavior of MC in the marine environment. In this work, we exploit a unique marine study site in the Baltic Sea with exposed solid explosives to quantify in situ MC dissolution fluxes using dissolved MC gradients near the exposed explosive surface, as well as benthic chamber incubations. The gradient method gave dissolution fluxes that ranged between 0.001 and 3.2, between 0.0001 and 0.04, and between 0.003 and 1.7 mg cm-2 day-1 for TNT, RDX, and DNB, respectively. Benthic chamber incubations indicated dissolution fluxes of 0.0047-0.277, 0-0.11, and 0.00047-1.45 mg cm-2 day-1 for TNT, RDX, and DNB, respectively. In situ dissolution fluxes estimated in the current study were lower than most dissolution rates reported for laboratory experiments, but they clearly demonstrated that MC are released from underwater munitions to the water column in the Baltic Sea.


Assuntos
Substâncias Explosivas , Trinitrotolueno , Solubilidade , Triazinas
11.
Sensors (Basel) ; 19(12)2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31242659

RESUMO

Charge-coupled device (CCD) spectrometers are widely used as detectors in analytical laboratory instruments and as sensors for in situ optical measurements. However, as the applications become more complex, the physical and electronic limits of the CCD spectrometers may restrict their applicability. The errors due to dark currents, temperature variations, and blooming can be readily corrected. However, a correction for uncertainty of integration time and wavelength calibration is typically lacking in most devices, and detector non-linearity may distort the signal by up to 5% for some measurements. Here, we propose a simple correction method to compensate for non-linearity errors in optical measurements where compact CCD spectrometers are used. The results indicate that the error due to the non-linearity of a spectrometer can be reduced from several hundred counts to about 40 counts if the proposed correction function is applied.

12.
Glob Chang Biol ; 24(9): 4438-4452, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29799660

RESUMO

Accumulation of anthropogenic CO2 is significantly altering ocean chemistry. A range of biological impacts resulting from this oceanic CO2 accumulation are emerging, however, the mechanisms responsible for observed differential susceptibility between organisms and across environmental settings remain obscure. A primary consequence of increased oceanic CO2 uptake is a decrease in the carbonate system buffer capacity, which characterizes the system's chemical resilience to changes in CO2 , generating the potential for enhanced variability in pCO2 and the concentration of carbonate [ CO32- ], bicarbonate [ HCO3- ], and protons [H+ ] in the future ocean. We conducted a meta-analysis of 17 shipboard manipulation experiments performed across three distinct geographical regions that encompassed a wide range of environmental conditions from European temperate seas to Arctic and Southern oceans. These data demonstrated a correlation between the magnitude of natural phytoplankton community biological responses to short-term CO2 changes and variability in the local buffer capacity across ocean basin scales. Specifically, short-term suppression of small phytoplankton (<10 µm) net growth rates were consistently observed under enhanced pCO2 within experiments performed in regions with higher ambient buffer capacity. The results further highlight the relevance of phytoplankton cell size for the impacts of enhanced pCO2 in both the modern and future ocean. Specifically, cell size-related acclimation and adaptation to regional environmental variability, as characterized by buffer capacity, likely influences interactions between primary producers and carbonate chemistry over a range of spatio-temporal scales.


Assuntos
Dióxido de Carbono/análise , Clima , Fitoplâncton/fisiologia , Água do Mar/química , Aclimatação , Carbonatos , Geografia , Oceanos e Mares
13.
Anal Bioanal Chem ; 410(18): 4469-4479, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29721576

RESUMO

Certification of trace metals in seawater certified reference materials (CRMs) NASS-7 and CASS-6 is described. At the National Research Council Canada (NRC), column separation was performed to remove the seawater matrix prior to the determination of Cd, Cr, Cu, Fe, Pb, Mn, Mo, Ni, U, V, and Zn, whereas As was directly measured in 10-fold diluted seawater samples, and B was directly measured in 200-fold diluted seawater samples. High-resolution inductively coupled plasma mass spectrometry (HR-ICPMS) was used for elemental analyses, with double isotope dilution for the accurate determination of B, Cd, Cr, Cu, Fe, Pb, Mo, Ni, U, and Zn in seawater NASS-7 and CASS-6, and standard addition calibration for As, Co, Mn, and V. In addition, all analytes were measured using standard addition calibration with triple quadrupole (QQQ)-ICPMS to provide a second set of data at NRC. Expert laboratories worldwide were invited to contribute data to the certification of trace metals in NASS-7 and CASS-6. Various analytical methods were employed by participants including column separation, co-precipitation, and simple dilution coupled to ICPMS detection or flow injection analysis coupled to chemiluminescence detection, with use of double isotope dilution calibration, matrix matching external calibration, and standard addition calibration. Results presented in this study show that majority of laboratories have demonstrated their measurement capabilities for the accurate determination of trace metals in seawater. As a result of this comparison, certified/reference values and associated uncertainties were assigned for 14 elements in seawater CRMs NASS-7 and CASS-6, suitable for the validation of methods used for seawater analysis.

14.
Proc Natl Acad Sci U S A ; 112(4): 1089-94, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25561526

RESUMO

The biological carbon pump, which transports particulate organic carbon (POC) from the surface to the deep ocean, plays an important role in regulating atmospheric carbon dioxide (CO2) concentrations. We know very little about geographical variability in the remineralization depth of this sinking material and less about what controls such variability. Here we present previously unpublished profiles of mesopelagic POC flux derived from neutrally buoyant sediment traps deployed in the North Atlantic, from which we calculate the remineralization length scale for each site. Combining these results with corresponding data from the North Pacific, we show that the observed variability in attenuation of vertical POC flux can largely be explained by temperature, with shallower remineralization occurring in warmer waters. This is seemingly inconsistent with conclusions drawn from earlier analyses of deep-sea sediment trap and export flux data, which suggest lowest transfer efficiency at high latitudes. However, the two patterns can be reconciled by considering relatively intense remineralization of a labile fraction of material in warm waters, followed by efficient downward transfer of the remaining refractory fraction, while in cold environments, a larger labile fraction undergoes slower remineralization that continues over a longer length scale. Based on the observed relationship, future increases in ocean temperature will likely lead to shallower remineralization of POC and hence reduced storage of CO2 by the ocean.

15.
Sensors (Basel) ; 18(8)2018 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-30103397

RESUMO

Increasing atmospheric CO2 concentrations are resulting in a reduction in seawater pH, with potential detrimental consequences for marine organisms. Improved efforts are required to monitor the anthropogenically driven pH decrease in the context of natural pH variations. We present here a high resolution surface water pH data set obtained in summer 2011 in North West European Shelf Seas. The aim of our paper is to demonstrate the successful deployment of the pH sensor, and discuss the carbonate chemistry dynamics of surface waters of Northwest European Shelf Seas using pH and ancillary data. The pH measurements were undertaken using spectrophotometry with a Lab-on-Chip pH sensor connected to the underway seawater supply of the ship. The main processes controlling the pH distribution along the ship's transect, and their relative importance, were determined using a statistical approach. The pH sensor allowed 10 measurements h-1 with a precision of 0.001 pH units and a good agreement with pH calculated from a pair of discretely sampled carbonate variables dissolved inorganic carbon (DIC), total alkalinity (TA) and partial pressure of CO2 (pCO2) (e.g., pHDICpCO2). For this summer cruise, the biological activity formed the main control on the pH distribution along the cruise transect. This study highlights the importance of high quality and high resolution pH measurements for the assessment of carbonate chemistry dynamics in marine waters.

16.
Proc Natl Acad Sci U S A ; 111(4): 1438-42, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24367112

RESUMO

Inorganic nitrogen depletion restricts productivity in much of the low-latitude oceans, generating a selective advantage for diazotrophic organisms capable of fixing atmospheric dinitrogen (N2). However, the abundance and activity of diazotrophs can in turn be controlled by the availability of other potentially limiting nutrients, including phosphorus (P) and iron (Fe). Here we present high-resolution data (∼0.3°) for dissolved iron, aluminum, and inorganic phosphorus that confirm the existence of a sharp north-south biogeochemical boundary in the surface nutrient concentrations of the (sub)tropical Atlantic Ocean. Combining satellite-based precipitation data with results from a previous study, we here demonstrate that wet deposition in the region of the intertropical convergence zone acts as the major dissolved iron source to surface waters. Moreover, corresponding observations of N2 fixation and the distribution of diazotrophic Trichodesmium spp. indicate that movement in the region of elevated dissolved iron as a result of the seasonal migration of the intertropical convergence zone drives a shift in the latitudinal distribution of diazotrophy and corresponding dissolved inorganic phosphorus depletion. These conclusions are consistent with the results of an idealized numerical model of the system. The boundary between the distinct biogeochemical systems of the (sub)tropical Atlantic thus appears to be defined by the diazotrophic response to spatial-temporal variability in external Fe inputs. Consequently, in addition to demonstrating a unique seasonal cycle forced by atmospheric nutrient inputs, we suggest that the underlying biogeochemical mechanisms would likely characterize the response of oligotrophic systems to altered environmental forcing over longer timescales.


Assuntos
Cianobactérias/fisiologia , Estações do Ano , Oceano Atlântico , Fixação de Nitrogênio
17.
Proc Natl Acad Sci U S A ; 110(44): 17668-73, 2013 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-23431201

RESUMO

Long-term observations of the reactive chemical composition of the tropical marine boundary layer (MBL) are rare, despite its crucial role for the chemical stability of the atmosphere. Recent observations of reactive bromine species in the tropical MBL showed unexpectedly high levels that could potentially have an impact on the ozone budget. Uncertainties in the ozone budget are amplified by our poor understanding of the fate of NOx (= NO + NO2), particularly the importance of nighttime chemical NOx sinks. Here, we present year-round observations of the multiisotopic composition of atmospheric nitrate in the tropical MBL at the Cape Verde Atmospheric Observatory. We show that the observed oxygen isotope ratios of nitrate are compatible with nitrate formation chemistry, which includes the BrNO3 sink at a level of ca. 20 ± 10% of nitrate formation pathways. The results also suggest that the N2O5 pathway is a negligible NOx sink in this environment. Observations further indicate a possible link between the NO2/NOx ratio and the nitrogen isotopic content of nitrate in this low NOx environment, possibly reflecting the seasonal change in the photochemical equilibrium among NOx species. This study demonstrates the relevance of using the stable isotopes of oxygen and nitrogen of atmospheric nitrate in association with concentration measurements to identify and constrain chemical processes occurring in the MBL.


Assuntos
Atmosfera/análise , Modelos Químicos , Nitratos/análise , Cabo Verde , Cromatografia por Troca Iônica , Estações do Ano , Clima Tropical
18.
Proc Natl Acad Sci U S A ; 109(23): 8845-9, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22615387

RESUMO

Coccolithophores are an important component of the Earth system, and, as calcifiers, their possible susceptibility to ocean acidification is of major concern. Laboratory studies at enhanced pCO(2) levels have produced divergent results without overall consensus. However, it has been predicted from these studies that, although calcification may not be depressed in all species, acidification will produce "a transition in dominance from more to less heavily calcified coccolithophores" [Ridgwell A, et al., (2009) Biogeosciences 6:2611-2623]. A recent observational study [Beaufort L, et al., (2011) Nature 476:80-83] also suggested that coccolithophores are less calcified in more acidic conditions. We present the results of a large observational study of coccolithophore morphology in the Bay of Biscay. Samples were collected once a month for over a year, along a 1,000-km-long transect. Our data clearly show that there is a pronounced seasonality in the morphotypes of Emiliania huxleyi, the most abundant coccolithophore species. Whereas pH and CaCO(3) saturation are lowest in winter, the E. huxleyi population shifts from <10% (summer) to >90% (winter) of the heavily calcified form. However, it is unlikely that the shifts in carbonate chemistry alone caused the morphotype shift. Our finding that the most heavily calcified morphotype dominates when conditions are most acidic is contrary to the earlier predictions and raises further questions about the fate of coccolithophores in a high-CO(2) world.


Assuntos
Cálcio/análise , Mudança Climática , Haptófitas/química , Estações do Ano , Carbonato de Cálcio/análise , França , Haptófitas/fisiologia , Concentração de Íons de Hidrogênio , Oceanos e Mares , Fotossíntese , Densidade Demográfica , Comunicações Via Satélite , Água do Mar/química
19.
Anal Chim Acta ; 1307: 342610, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719401

RESUMO

BACKGROUND: The increase in anthropogenic CO2 concentrations in the Earth's atmosphere since the industrial revolution has resulted in an increased uptake of CO2 by the oceans, leading to ocean acidification. Dissolved Inorganic Carbon (DIC) is one of the key variables to characterize the seawater carbonate system. High quality DIC observations at a high spatial-temporal resolution is required to improve our understanding of the marine carbonate system. To meet the requirements, autonomous DIC analyzers are needed which offer a high sampling frequency, are cost-effective and have a low reagent and power consumption. RESULTS: We present the development and validation of a novel analyzer for autonomous measurements of DIC in seawater using conductometric detection. The analyzer employs a gas diffusion sequential injection approach in a "Tube In A Tube" configuration that facilitates diffusion of gaseous CO2 from an acidified sample through a gas permeable membrane into a stream of an alkaline solution. The change in conductivity in the alkaline medium is proportional to the DIC concentration of the sample and is measured using a detection cell constructed of 4 hollow brass electrodes. Physical and chemical optimizations of the analyzer yielded a sampling frequency of 4 samples h-1 using sub mL reagent volumes for each measurement. Temperature and salinity effects on DIC measurements were mathematically corrected to increase accuracy. Analytical precision of ±4.9 µmol kg-1 and ±9.7 µmol kg-1 were achieved from measurements of a DIC reference material in the laboratory and during a field deployment in the southwest Baltic Sea, respectively. SIGNIFICANCE: This study describes a simple, cost-effective, autonomous, on-site benchtop DIC analyzer capable of measuring DIC in seawater at a high temporal resolution as a step towards an underwater DIC sensor. The analyzer is able to measure a wide range of DIC concentrations in both fresh and marine waters. The achieved accuracy and precision offer an excellent opportunity to employ the analyzer for ocean acidification studies and CO2 leakage detection in the context of Carbon Capture and Storage operations.

20.
Water Res ; 250: 121042, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38134859

RESUMO

Regime shifts in the diatom-dinoflagellate composition have occurred in the Baltic Sea (BS) and Bohai Sea (BHS) under eutrophication and have affected the entire coastal ecosystem, damaging the regulatory, provisioning, cultural, and supporting service functions of marine ecosystems. Therefore, finding a solution to restore the balance of phytoplankton community composition and mitigate eutrophication is of utmost importance. In this study, the Driver (per capita gross domestic product)-Pressure (terrestrial inputs)-State (seawater environmental parameters)-Impact (proportions of diatoms and dinoflagellates)-Response (eutrophication governance projects) framework served as a guide for our analysis of the causal relationship among various environmental components in the coastal system. The relevant data in BS and BHS spanning from the 1950s to the 2010s were collected and used to construct a diatom-dinoflagellate composition single index, which allowed us to identify the shifts in regimes (mutation points and phases) of the diatom-dinoflagellate composition and environmental factors using sequential t-test analysis. We also identified key environmental factors that moderated the diatom-dinoflagellate composition using redundancy analysis and analyzed the partial effects of the main environmental factors on the diatom-dinoflagellate composition using a generalized additive model. Finally, the regulation of the eutrophication governance investment on diatom-dinoflagellate composition was investigated. We found that (1) BS is a "time machine," with coastal eutrophication governance and regime shift of diatom-dinoflagellate composition and environmental factors two decades earlier than that in BHS; (2) in BS, the key moderation factor of diatom proportion is SiO3-Si and those of dinoflagellates are sea surface salinity and N:P ratio; in BHS, the key moderation factors of diatom proportion are PO4-P and Si:N ratio and those of dinoflagellate are dissolved inorganic nitrogen and N:P and Si:P ratios; (3) it is projected that BHS will enter its recovery phase from eutrophication after mid-2020s. In summary, the N/P/Si stoichiometric relationships should be given greater consideration, with the exception of the "dose-response" relationship in both sea areas. Our results indicate an urgent need for an improved mechanistic understanding of how phytoplankton biodiversity changes in response to changes in nutrient load and how we should ultimately deal with the challenges that arise.


Assuntos
Diatomáceas , Dinoflagellida , Diatomáceas/fisiologia , Ecossistema , Oceanos e Mares , Fitoplâncton/fisiologia , Dinoflagellida/fisiologia , Eutrofização , Monitoramento Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA