Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(46): 53342-53350, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37939266

RESUMO

We demonstrate here a simple liquid electrolyte soluble Cu-compound, viz., cupric chloride (CuCl2) as an alternative electrocatalyst for nonaqueous Li-CO2 batteries. The key point behind the selection of CuCl2 is that the theoretical potential of Li-CO2 batteries (≈2.8 V; Li+|Li) lies within the Cu1+|Cu0 redox couple (2.3-3.3 V; Li+|Li). The presence of CuCl2 in the liquid electrolyte near to the carbon nanotubes (≡ coelectrocatalyst)-loaded porous-CO2 cathode led to efficient electrocatalysis of CO2 and superior Li-CO2 battery performance. The cell overpotential in the presence of CuCl2 is 0.65 V, which is less than half compared to the one without it (≈1.7 V). Extensive investigations precisely elucidate the electrocatalytic mediation of CuCl2 with the redox characteristics of CO2. Additionally, only in the presence of CuCl2, the existence of Li-oxalate (Li2C2O4) is detected, which is a seldomly reported intermediate preceding the formation of Li2CO3.

2.
Front Chem ; 11: 1141259, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37021147

RESUMO

Silk fibroin (SF) is a natural protein largely used in the textile industry with applications in bio-medicine, catalysis as well as in sensing materials. SF is a fiber material which is bio-compatible, biodegradable, and possesses high tensile strength. The incorporation of nanosized particles into SF allows the development of a variety of composites with tailored properties and functions. Silk and its composites are being explored for a wide range of sensing applications like strain, proximity, humidity, glucose, pH and hazardous/toxic gases. Most studies aim at improving the mechanical strength of SF by preparing hybrids with metal-based nanoparticles, polymers and 2D materials. Studies have been conducted by introducing semiconducting metal oxides into SF to tailor its properties like conductivity for use as a gas sensing material, where SF acts as a conductive path as well as a substrate for the incorporated nanoparticles. We have reviewed gas and humidity sensing properties of silk, silk with 0D (i.e., metal oxide), 2D (e.g., graphene, MXenes) composites. The nanostructured metal oxides are generally used in sensing applications, which use its semiconducting properties to show variation in the measured properties (e.g., resistivity, impedance) due to analyte gas adsorption on its surface. For example, vanadium oxides (i.e., V2O5) have been shown as candidates for sensing nitrogen containing gases and doped vanadium oxides for sensing CO gas. In this review article we provide latest and important results in the gas and humidity sensing of SF and its composites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA