Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 27(13): 17701-17707, 2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-31252726

RESUMO

The successful integration of capacitive phase shifters featuring a p-type strained SiGe layer in a 300 mm silicon photonics platform is presented. The phase shift is evaluated with a voltage swing of only 0.9 Vpp, compatible with CMOS technology. A good correlation is shown between the phase shift efficiency from 10 to 60°/mm and the capacitive oxide thickness varying from 15 to 4 nm. Corresponding insertion losses are as low as 3 dB/mm thanks to the development of low loss poly-silicon and to a careful design of the doped layers within the waveguide. The thin SiGe layer brings an additional 20% gain in efficiency due to higher hole efficiency in strained SiGe.

2.
Opt Express ; 26(5): 5983-5990, 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29529794

RESUMO

Optical properties of poly-silicon material are investigated to be integrated in new silicon photonics devices, such as capacitive modulators. Test structure fabrication is done on 300 mm wafer using LPCVD deposition: 300 nm thick amorphous silicon layers are deposited on thermal oxide, followed by solid phase crystallization anneal. Rib waveguides are fabricated and optical propagation losses measured at 1.31 µm. Physical analysis (TEM ASTAR, AFM and SIMS) are used to assess the origin of losses. Optimal deposition and annealing conditions have been defined, resulting in 400 nm-wide rib waveguides with only 9.2-10 dB/cm losses.

3.
J Phys Chem C Nanomater Interfaces ; 127(39): 19867-19877, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37817920

RESUMO

Controlling ultrafast material transformations with atomic precision is essential for future nanotechnology. Pulsed laser annealing (LA), inducing extremely rapid and localized phase transitions, is a powerful way to achieve this but requires careful optimization together with the appropriate system design. We present a multiscale LA computational framework that can simulate atom-by-atom the highly out-of-equilibrium kinetics of a material as it interacts with the laser, including effects of structural disorder. By seamlessly coupling a macroscale continuum solver to a nanoscale superlattice kinetic Monte Carlo code, this method overcomes the limits of state-of-the-art continuum-based tools. We exploit it to investigate nontrivial changes in composition, morphology, and quality of laser-annealed SiGe alloys. Validations against experiments and phase-field simulations as well as advanced applications to strained, defected, nanostructured, and confined SiGe are presented, highlighting the importance of a multiscale atomistic-continuum approach. Current applicability and potential generalization routes are finally discussed.

4.
Beilstein J Nanotechnol ; 9: 1926-1939, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30013886

RESUMO

In this paper, we present an enhanced differential Hall effect measurement method (DHE) for ultrathin Si and SiGe layers for the investigation of dopant activation in the surface region with sub-nanometre resolution. In the case of SiGe, which constitutes the most challenging process, we show the reliability of the SC1 chemical solution (NH4OH/H2O2/H2O) with its slow etch rate, stoichiometry conservation and low roughness generation. The reliability of a complete DHE procedure, with an etching step as small as 0.5 nm, is demonstrated on a dedicated 20 nm thick SiGe test structure fabricated by CVD and uniformly doped in situ during growth. The developed method is finally applied to the investigation of dopant activation achieved by advanced annealing methods (including millisecond and nanosecond laser annealing) in two material systems: 6 nm thick SiGeOI and 11 nm thick SOI. In both cases, DHE is shown to be a uniquely sensitive characterisation technique for a detailed investigation of dopant activation in ultrashallow layers, providing sub-nanometre resolution for both dopant concentration and carrier mobility depth profiles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA