Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 110: 129864, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38942126

RESUMO

We report herein the design and discovery of novel allosteric HIV-1 integrase inhibitors. Our design concept utilized the spirocyclic moiety to restrain the flexibility of the conformation of the lipophilic part of the inhibitor. Compound 5 showed antiviral activity by binding to the nuclear lens epithelium-derived growth factor (LEDGF/p75) binding site of HIV-1 integrase (IN). The introduction of a lipophilic amide substituent into the central benzene ring resulted in a significant increase in antiviral activity against HIV-1 WT X-ray crystallography of compound 15 in complex with the integrase revealed the presence of a hydrogen bond between the oxygen atom of the amide of compound 15 and the hydroxyl group of the T125 side chain. Chiral compound 17 showed high antiviral activity, good bioavailability, and low clearance in rats.


Assuntos
Desenho de Fármacos , Inibidores de Integrase de HIV , Integrase de HIV , HIV-1 , Compostos de Espiro , Inibidores de Integrase de HIV/farmacologia , Inibidores de Integrase de HIV/síntese química , Inibidores de Integrase de HIV/química , Integrase de HIV/metabolismo , HIV-1/efeitos dos fármacos , Cristalografia por Raios X , Ratos , Relação Estrutura-Atividade , Compostos de Espiro/química , Compostos de Espiro/farmacologia , Compostos de Espiro/síntese química , Animais , Humanos , Regulação Alostérica/efeitos dos fármacos , Estrutura Molecular , Modelos Moleculares , Sítios de Ligação
2.
J Virol ; 96(6): e0184321, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35045265

RESUMO

HIV-1 integrase (IN) is an essential enzyme for viral replication. Non-catalytic site integrase inhibitors (NCINIs) are allosteric HIV-1 IN inhibitors and a potential new class of antiretrovirals. In this report, we identified a novel NCINI, JTP-0157602, with an original scaffold. JTP-0157602 exhibited potent antiviral activity against HIV-1 and showed a serum-shifted 90% effective concentration (EC90) of 138 nM, which is comparable to those of the FDA-approved IN strand transfer inhibitors (INSTIs). This compound was fully potent against a wide range of recombinant viruses with IN polymorphisms, including amino acids 124/125, a hot spot of IN polymorphisms. In addition, JTP-0157602 retained potent antiviral activity against a broad panel of recombinant viruses with INSTI-related resistance mutations, including multiple substitutions that emerged in clinical studies of INSTIs. Resistance selection experiments of JTP-0157602 led to the emergence of A128T and T174I mutations, which are located at the lens epithelium-derived growth factor/p75 binding pocket of IN. JTP-0157602 inhibited HIV-1 replication mainly during the late phase of the replication cycle, and HIV-1 virions produced by reactivation from HIV-1 latently infected Jurkat cells in the presence of JTP-0157602 were noninfectious. These results suggest that JTP-0157602 and analog compounds can be used to treat HIV-1 infectious diseases. IMPORTANCE Non-catalytic site integrase inhibitors (NCINIs) are allosteric HIV-1 integrase (IN) inhibitors that bind to the lens epithelium-derived growth factor (LEDGF)/p75 binding pocket of IN. NCINIs are expected to be a new class of anti-HIV-1 agents. In this study, we present a novel NCINI, JTP-0157602, which has potent activity against a broad range of HIV-1 strains with IN polymorphisms. Furthermore, JTP-0157602 shows strong antiviral activity against IN strand transfer inhibitor-resistant mutations, suggesting that JTP-0157602 and its analogs are potential agents for treating HIV-1 infections. Structural modeling indicated that JTP-0157602 binds to the LEDGF/p75 binding pocket of IN, and the results of in vitro resistance induction revealed the JTP-0157602 resistance mechanism of HIV-1. These data shed light on developing novel NCINIs that exhibit potent activity against HIV-1 with broad IN polymorphisms and multidrug-resistant HIV-1 variants.


Assuntos
Inibidores de Integrase de HIV , Integrase de HIV , HIV-1 , Fármacos Anti-HIV/farmacologia , Resistência a Medicamentos/genética , Integrase de HIV/metabolismo , Inibidores de Integrase de HIV/química , Inibidores de Integrase de HIV/farmacologia , HIV-1/efeitos dos fármacos , HIV-1/enzimologia , HIV-1/genética , Humanos
3.
Chemistry ; 24(68): 18012-18019, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30426585

RESUMO

Although living polymerization methods are widely applicable to organic monomers, their application to inorganic monomers is rare. For the first time, we show that the living poly(methylenephosphine) (PMPn - ) anion can function as a macroinitiator for olefins. Specifically, the phosphaalkene, MesP=CPh2 (PA), and methyl methacrylate (MMA) can be sequentially copolymerized using the BnLi-TMEDA initiator system in toluene. A series of PMPn -b-PMMAm copolymers with narrow dispersities are accessible (D=1.05-1.10). Analysis of the block copolymers provided evidence for -P-CPh2 -CH2 -CMe(CO2 Me)- switching groups. Importantly, this indicates that the -P-CPh2 - anion directly initiates the anionic polymerization of MMA and stands in stark contrast to the isomerization mechanism followed for the homopolymerization of PA. For the first time, the glass transition of a PMPn homopolymer has been measured (Tg =45.1 °C, n=20). The PMPn -b-PMMAm copolymers do not phase separate and show a single Tg which increases with higher PMMA content.

4.
Chem Commun (Camb) ; 60(21): 2954-2957, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38375689

RESUMO

Ring-opening isomerization polymerization was developed using a combination of a ring-opening reaction of epoxides and subsequent Brook rearrangement. An epoxy monomer with a benzyltrimethylsilyl group was designed for the polymerization. Characterization of the obtained polymer by NMR and MALDI-TOF-MS indicated that polymerization proceeded exclusively via a ring-opening-isomerization anionic polymerization mechanism.

5.
ACS Med Chem Lett ; 14(12): 1833-1838, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38116417

RESUMO

The NLRP3 inflammasome plays an important role in the defense mechanism of the innate immune system and has recently attracted much attention as a drug target for various inflammatory disorders. Among the strategies for generating the novel chemotype in current drug discovery, scaffold hopping and bioisosteric replacement are known to be attractive approaches. As the results of our medicinal chemistry campaign, which involved exploration of core motifs using a ring closing approach, a five-membered oxazole-based scaffold was identified, and subsequent implementation of bioisosteric replacement led to discovery of a novel chemical class of NLRP3 inflammasome inhibitor bearing the acylsulfamide group. Further optimization of aniline and sulfamide moieties to improve potency in human whole blood assay led to the identification of the orally bioactive compound 32 in the LPS challenge model. Furthermore, compound 32 attenuated kidney injury in adriamycin-induced glomerulonephritis in mice. These investigations indicated that the NLRP3 inhibitor could be a potential therapeutic agent for glomerulonephritis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA