Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Small ; 20(11): e2304988, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37939305

RESUMO

Contact-induced electrification, commonly referred to as triboelectrification, is the subject of extensive investigation at liquid-solid interfaces due to its wide range of applications in electrochemistry, energy harvesting, and sensors. This study examines the triboelectric between an ionic liquid and 2D MoS2 under light illumination. Notably, when a liquid droplet slides across the MoS2 surface, an increase in the generated current and voltage is observed in the forward direction, while a decrease is observed in the reverse direction. This suggests a memory-like tribo-phototronic effect between ionic liquid and 2D MoS2 . The underlying mechanism behind this tribo-phototronic synaptic plasticity is proposed to be ion adsorption/desorption processes resulting from pseudocapacitive deionization/ionization at the liquid-MoS2  interface. This explanation is supported by the equivalent electrical circuit modeling, contact angle measurements, and electronic band diagrams. Furthermore, the influence of various factors such as velocity, step size, light wavelength and intensity, ion concentration, and bias voltage is thoroughly investigated. The artificial synaptic plasticity arising from this phenomenon exhibits significant synaptic features, including potentiation/inhibition, paired-pulse facilitation/depression, and short-term memory (STM) to long-term memory (LTM) transition. This research opens up promising avenues for the development of synaptic memory systems and intelligent sensing applications based on liquid-solid interfaces.

2.
Nanotechnology ; 34(28)2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37019101

RESUMO

Self-powered broadband photodetectors have attracted great interest due to their applications in biomedical imaging, integrated circuits, wireless communication systems, and optical switches. Recently, significant research is being carried out to develop high-performance self-powered photodetectors based on thin 2D materials and their heterostructures due to their unique optoelectronic properties. Herein, a vertical heterostructure based on p-type 2D WSe2and n-type thin film ZnO is realized for photodetectors with a broadband response in the wavelength range of 300-850 nm. Due to the formation of a built-in electric field at the WSe2/ZnO interface and the photovoltaic effect, this structure exhibits a rectifying behavior with a maximum photoresponsivity and detectivity of ∼131 mA W-1and ∼3.92 × 1010Jones, respectively, under an incident light wavelength ofλ= 300 nm at zero voltage bias. It also shows a 3-dB cut-off frequency of ∼300 Hz along with a fast response time of ∼496µs, making it suitable for high-speed self-powered optoelectronic applications. Furthermore, the facilitation of charge collection under reverse voltage bias results in a photoresponsivity as high as ∼7160 mA W-1and a large detectivity of ∼1.18 × 1011Jones at a bias voltage of -5 V. Hence, the p-WSe2/n-ZnO heterojunction is proposed as an excellent candidate for high-performance, self-powered, and broadband photodetectors.

3.
Nature ; 544(7648): 75-79, 2017 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-28321128

RESUMO

Colloidal quantum dots (CQDs) feature a low degeneracy of electronic states at the band edges compared with the corresponding bulk material, as well as a narrow emission linewidth. Unfortunately for potential laser applications, this degeneracy is incompletely lifted in the valence band, spreading the hole population among several states at room temperature. This leads to increased optical gain thresholds, demanding high photoexcitation levels to achieve population inversion (more electrons in excited states than in ground states-the condition for optical gain). This, in turn, increases Auger recombination losses, limiting the gain lifetime to sub-nanoseconds and preventing steady laser action. State degeneracy also broadens the photoluminescence linewidth at the single-particle level. Here we demonstrate a way to decrease the band-edge degeneracy and single-dot photoluminescence linewidth in CQDs by means of uniform biaxial strain. We have developed a synthetic strategy that we term facet-selective epitaxy: we first switch off, and then switch on, shell growth on the (0001) facet of wurtzite CdSe cores, producing asymmetric compressive shells that create built-in biaxial strain, while still maintaining excellent surface passivation (preventing defect formation, which otherwise would cause non-radiative recombination losses). Our synthesis spreads the excitonic fine structure uniformly and sufficiently broadly that it prevents valence-band-edge states from being thermally depopulated. We thereby reduce the optical gain threshold and demonstrate continuous-wave lasing from CQD solids, expanding the library of solution-processed materials that may be capable of continuous-wave lasing. The individual CQDs exhibit an ultra-narrow single-dot linewidth, and we successfully propagate this into the ensemble of CQDs.

4.
Nano Lett ; 15(2): 1101-8, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25547345

RESUMO

Extremely thin-absorber solar cells offer low materials utilization and simplified manufacture but require improved means to enhance photon absorption in the active layer. Here, we report enhanced-absorption colloidal quantum dot (CQD) solar cells that feature transfer-stamped solution-processed pyramid-shaped electrodes employed in a hierarchically structured device. The pyramids increase, by up to a factor of 2, the external quantum efficiency of the device at absorption-limited wavelengths near the absorber band edge. We show that absorption enhancement can be optimized with increased pyramid angle with an appreciable net improvement in power conversion efficiency, that is, with the gain in current associated with improved absorption and extraction overcoming the smaller fractional decrease in open-circuit voltage associated with increased junction area. We show that the hierarchical combination of micron-scale structured electrodes with nanoscale films provides for an optimized enhancement at absorption-limited wavelengths. We fabricate 54.7° pyramid-patterned electrodes, conformally apply the quantum dot films, and report pyramid CQD solar cells that exhibit a 24% improvement in overall short-circuit current density with champion devices providing a power conversion efficiency of 9.2%.

5.
Nano Lett ; 15(7): 4611-5, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26031416

RESUMO

Colloidal nanoplatelets, quasi-two-dimensional quantum wells, have recently been introduced as colloidal semiconductor materials with the narrowest known photoluminescence line width (∼10 nm). Unfortunately, these materials have not been shown to have continuously tunable emission but rather emit at discrete wavelengths that depend strictly on atomic-layer thickness. Herein, we report a new synthesis approach that overcomes this issue: by alloying CdSe colloidal nanoplatelets with CdS, we finely tune the emission spectrum while still leveraging atomic-scale thickness control. We proceed to demonstrate light-emitting diodes with sub-bandgap turn-on voltages (2.1 V for a device emitting at 2.4 eV) and the narrowest electroluminescence spectrum (FWHM ∼12.5 nm) reported for colloidal semiconductor LEDs.

6.
Nano Lett ; 13(4): 1502-8, 2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-23444829

RESUMO

Recent advances in spectrally tuned, solution-processed plasmonic nanoparticles have provided unprecedented control over light's propagation and absorption via engineering at the nanoscale. Simultaneous parallel progress in colloidal quantum dot photovoltaics offers the potential for low-cost, large-area solar power; however, these devices suffer from poor quantum efficiency in the more weakly absorbed infrared portion of the sun's spectrum. Here, we report a plasmonic-excitonic solar cell that combines two classes of solution-processed infrared materials that we tune jointly. We show through experiment and theory that a plasmonic-excitonic design using gold nanoshells with optimized single particle scattering-to-absorption cross-section ratios leads to a strong enhancement in near-field absorption and a resultant 35% enhancement in photocurrent in the performance-limiting near-infrared spectral region.


Assuntos
Nanoconchas/química , Pontos Quânticos/química , Energia Solar , Fontes de Energia Elétrica , Desenho de Equipamento , Ouro/química
7.
Adv Sci (Weinh) ; 10(10): e2205458, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36658730

RESUMO

Volatile organic compounds (VOCs) sensors have a broad range of applications including healthcare, process control, and air quality analysis. There are a variety of techniques for detecting VOCs such as optical, acoustic, electrochemical, and chemiresistive sensors. However, existing commercial VOC detectors have drawbacks such as high cost, large size, or lack of selectivity. Herein, a new sensing mechanism is demonstrated based on surface interactions between VOC and UV-excited 2D germanium sulfide (GeS), which provides an effective solution to distinguish VOCs. The GeS sensor shows a unique time-resolved electrical response to different VOC species, facilitating identification and qualitative measurement of VOCs. Moreover, machine learning is utilized to distinguish VOC species from their dynamic response via visualization with high accuracy. The proposed approach demonstrates the potential of 2D GeS as a promising candidate for selective miniature VOCs sensors in critical applications such as non-invasive diagnosis of diseases and health monitoring.

8.
ACS Omega ; 7(51): 48383-48390, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36591213

RESUMO

As a new class of two-dimensional (2D) materials and a group-VI chalcogen, tellurium (Te) has emerged as a p-type semiconductor with high carrier mobility. Potential applications include high-speed opto-electronic devices for communication. One method to enhance the performance of 2D material-based photodetectors is by integration with a IV group of semiconductors such as silicon (Si). In this work, we demonstrate a self-powered, high-speed, broadband photodetector based on the 2D Te/n-type Si heterojunction. The fabricated Te/n-type Si heterojunction exhibits high performance in the UV-vis-NIR light with a high responsivity of up to ∼250 mA/W and a photocurrent-to-dark current ratio (I on/I off) of ∼106, fast response time of 8.6 µs, and superior repeatability and stability. The results show that the fabricated Te/n-type Si heterojunction photodetector has a strong potential to be utilized in ultrafast, broadband, and efficient photodetection applications.

9.
Nat Commun ; 13(1): 7593, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36535944

RESUMO

The elevation of cytokine levels in body fluids has been associated with numerous health conditions. The detection of these cytokine biomarkers at low concentrations may help clinicians diagnose diseases at an early stage. Here, we report an asymmetric geometry MoS2 diode-based biosensor for rapid, label-free, highly sensitive, and specific detection of tumor necrosis factor-α (TNF-α), a proinflammatory cytokine. This sensor is functionalized with TNF-α binding aptamers to detect TNF-α at concentrations as low as 10 fM, well below the typical concentrations found in healthy blood. Interactions between aptamers and TNF-α at the sensor surface induce a change in surface energy that alters the current-voltage rectification behavior of the MoS2 diode, which can be read out using a two-electrode configuration. The key advantages of this diode sensor are the simple fabrication process and electrical readout, and therefore, the potential to be applied in a rapid and easy-to-use, point-of-care, diagnostic tool.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Citocinas , Molibdênio , Fator de Necrose Tumoral alfa , Técnicas Biossensoriais/métodos
10.
Nanoscale ; 13(19): 8940-8947, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-33960339

RESUMO

Thickness-modulated lateral MoS2 diodes with an extracted benchmark cutoff frequency (fc) of up to 126 GHz are implemented and fully characterised. Fabricated diodes demonstrate an on-off current ratio of more than 600 and a short circuit current responsivity at zero-bias of 7 A/W. The excellent performance achieved in our device is attributed to reduced contact resistance from using In/Au contacts and low junction capacitance due to the lateral device structure. In addition, the use of multilayer MoS2 crystals enabled relatively high current flow. Small- and large-signal models are extracted from DC and RF characterisation of the fabricated diode prototype. Extracted compact models are compared to the measured DC and S-parameters of the diode, demonstrating excellent matching between models and measurements. The presented diode is suitable for switching circuits and high frequency applications.

11.
ACS Appl Mater Interfaces ; 13(38): 45843-45853, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34542262

RESUMO

Recently, atomically thin two-dimensional (2D) transition-metal dichalcogenides (TMDs) have attracted great interest in electronic and opto-electronic devices for high-integration-density applications such as data storage due to their small vertical dimension and high data storage capability. Here, we report a memristor based on free-standing multilayer molybdenum disulfide (MoS2) with a high current on/off ratio of ∼103 and a stable retention for at least 3000 s. Through light modulation of the carrier density in the suspended MoS2 channel, the on/off ratio can be further increased to ∼105. Moreover, the essential photosynaptic functions with short- and long-term memory (STM and LTM) behaviors are successfully mimicked by such devices. These results also indicate that STM can be transferred to LTM by increasing the light stimuli power, pulse duration, and number of pulses. The electrical measurements performed under vacuum and ambient air conditions propose that the observed resistive switching is due to adsorbed oxygen and water molecules on both sides of the MoS2 channel. Thus, our free-standing 2D multilayer MoS2-based memristors propose a simple approach for fabrication of a low-power-consumption and reliable resistive switching device for neuromorphic applications.

12.
ACS Nano ; 9(9): 8833-42, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26266671

RESUMO

Materials optimized for single-junction solar spectral harvesting, such as silicon, perovskites, and large-band-gap colloidal quantum dot solids, fail to absorb the considerable infrared spectral energy that lies below their respective band gap. Here we explore through modeling and experiment the potential for colloidal quantum dots (CQDs) to augment the performance of solar cells by harnessing transmitted light in the infrared. Through detailed balance modeling, we identify the CQD band gap that is best able to augment wafer-based, thin-film, and also solution-processed photovoltaic (PV) materials. The required quantum dots, with an excitonic peak at 1.3 µm, have not previously been studied in depth for solar performance. Using computational studies we find that a new ligand scheme distinct from that employed in better-explored 0.95 µm band gap PbS CQDs is necessary; only via the solution-phase application of a short bromothiol can we prevent dot fusion during ensuing solid-state film treatments and simultaneously offer a high valence band-edge density of states to enhance hole transport. Photoluminescence spectra and transient studies confirm the desired narrowed emission peaks and reduced surface-trap-associated decay. Electronic characterization reveals that only through the use of the bromothiol ligands is strong hole transport retained. The films, when used to make PV devices, achieve the highest AM1.5 power conversion efficiency yet reported in a solution-processed material having a sub-1 eV band gap.

13.
Nat Commun ; 6: 8694, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26493282

RESUMO

Colloidal quantum dots have grown in interest as materials for light amplification and lasing in view of their bright photoluminescence, convenient solution processing and size-controlled spectral tunability. To date, lasing in colloidal quantum dot solids has been limited to the nanosecond temporal regime, curtailing their application in systems that require more sustained emission. Here we find that the chief cause of nanosecond-only operation has been thermal runaway: the combination of rapid heat injection from the pump source, poor heat removal and a highly temperature-dependent threshold. We show microsecond-sustained lasing, achieved by placing ultra-compact colloidal quantum dot films on a thermally conductive substrate, the combination of which minimizes heat accumulation. Specifically, we employ inorganic-halide-capped quantum dots that exhibit high modal gain (1,200 cm(-1)) and an ultralow amplified spontaneous emission threshold (average peak power of ∼50 kW cm(-2)) and rely on an optical structure that dissipates heat while offering minimal modal loss.

14.
Adv Mater ; 27(1): 53-8, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25359103

RESUMO

A new method to deposit perovskite thin films that benefit from the thickness control and conformality of atomic layer deposition (ALD) is detailed. A seed layer of ALD PbS is place-exchanged with PbI2 and subsequently CH3 NH3 PbI3 perovskite. These films show promising optical properties, with gain coefficients of 3200 ± 830 cm(-1) .

15.
ACS Nano ; 8(10): 10947-52, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25313937

RESUMO

Conformal integration of semiconductor gain media is broadly important in on-chip optical communication technology. Here we deploy atomic layer deposition to create conformally deposited organohalide perovskites--an attractive semiconducting gain medium--with the goal of achieving coherent light emission on spherical optical cavities. We demonstrate the high quality of perovskite gain media fabricated with this method, achieving optical gain in the nanosecond pulse regime with a threshold for amplified spontaneous emission of 65 ± 8 µJ cm(-2). Through variable stripe length measurements, we report a net modal gain of 125 ± 22 cm(-1) and a gain bandwidth of 50 ± 14 meV. Leveraging the high quality of the gain medium, we conformally coat silica microspheres with perovskite to form whispering gallery mode optical cavities and achieve lasing.

16.
Sci Rep ; 3: 2928, 2013 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-24121519

RESUMO

Solution processed colloidal quantum dot (CQD) solar cells have great potential for large area low-cost photovoltaics. However, light utilization remains low mainly due to the tradeoff between small carrier transport lengths and longer infrared photon absorption lengths. Here, we demonstrate a bottom-illuminated periodic nanostructured CQD solar cell that enhances broadband absorption without compromising charge extraction efficiency of the device. We use finite difference time domain (FDTD) simulations to study the nanostructure for implementation in a realistic device and then build proof-of-concept nanostructured solar cells, which exhibit a broadband absorption enhancement over the wavelength range of λ = 600 to 1,100 nm, leading to a 31% improvement in overall short-circuit current density compared to a planar device containing an approximately equal volume of active material. Remarkably, the improved current density is achieved using a light-absorber volume less than half that typically used in the best planar devices.

17.
ACS Nano ; 7(7): 6111-6, 2013 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-23738495

RESUMO

Colloidal quantum dot (CQD) solar cells combine solution-processability with quantum-size-effect tunability for low-cost harvesting of the sun's broad visible and infrared spectrum. The highest-performing colloidal quantum dot solar cells have, to date, relied on a depleted-heterojunction architecture in which an n-type transparent metal oxide such as TiO2 induces a depletion region in the p-type CQD solid. These devices have, until now, been limited by a modest depletion region depth produced in the CQD solid owing to limitations in the doping available in TiO2. Herein we report a new device geometry-one based on a donor-supply electrode (DSE)-that leads to record-performing CQD photovoltaic devices. Only by employing this new charge-extracting approach do we deepen the depletion region in the CQD solid and thereby extract notably more photocarriers, the key element in achieving record photocurrent and device performance. With the use of optoelectronic modeling corroborated by experiment, we develop the guidelines for building a superior CQD solar cell based on the DSE concept. We confirm that using a shallow-work-function terminal electrode is essential to producing improved charge extraction and enhanced performance.


Assuntos
Fontes de Energia Elétrica , Eletrodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Pontos Quânticos , Energia Solar , Titânio/química , Transporte de Elétrons , Desenho de Equipamento , Análise de Falha de Equipamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA