RESUMO
Hereditary deafness and retinal dystrophy are each genetically heterogenous and clinically variable. Three small unrelated families segregating the combination of deafness and retinal dystrophy were studied by exome sequencing (ES). The proband of Family 1 was found to be compound heterozygous for NM_004525.3: LRP2: c.5005A > G, p.(Asn1669Asp) and c.149C > G, p.(Thr50Ser). In Family 2, two sisters were found to be compound heterozygous for LRP2 variants, p.(Tyr3933Cys) and an experimentally confirmed c.7715 + 3A > T consensus splice-altering variant. In Family 3, the proband is compound heterozygous for a consensus donor splice site variant LRP2: c.8452_8452 + 1del and p.(Cys3150Tyr). In mouse cochlea, Lrp2 is expressed abundantly in the stria vascularis marginal cells demonstrated by smFISH, single-cell and single-nucleus RNAseq, suggesting that a deficiency of LRP2 may compromise the endocochlear potential, which is required for hearing. LRP2 variants have been associated with Donnai-Barrow syndrome and other multisystem pleiotropic phenotypes different from the phenotypes of the four cases reported herein. Our data expand the phenotypic spectrum associated with pathogenic variants in LRP2 warranting their consideration in individuals with a combination of hereditary hearing loss and retinal dystrophy.
Assuntos
Surdez , Perda Auditiva Neurossensorial , Perda Auditiva , Miopia , Distrofias Retinianas , Animais , Camundongos , Humanos , Perda Auditiva Neurossensorial/genética , Surdez/genética , Miopia/genética , Mutação , Linhagem , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genéticaRESUMO
Hearing impairment (HI) is highly heterogeneous with over 123 associated genes reported to date, mostly from studies among Europeans and Asians. Here, we performed a systematic review of literature on the genetic profile of HI in Africa. The study protocol was registered on PROSPERO, International Prospective Register of Systematic Reviews with the registration number "CRD42021240852". Literature search was conducted on PubMed, Scopus, Africa-Wide Information, and Web of Science databases. A total of 89 full-text records was selected and retrieved for data extraction and analyses. We found reports from only 17/54 (31.5%) African countries. The majority (61/89; 68.5%) of articles were from North Africa, with few reports found from sub-Saharan Africa. The most common method used in these publications was targeted gene sequencing (n = 66/111; 59.5%), and only 13.5% (n = 15/111) used whole-exome sequencing. More than half of the studies were performed in families segregating HI (n = 51/89). GJB2 was the most investigated gene, with GJB2: p.(R143W) founder variant only reported in Ghana, while GJB2: c.35delG was common in North African countries. Variants in MYO15A were the second frequently reported in both North and Central Africa, followed by ATP6V1B1 only reported from North Africa. Usher syndrome was the main syndromic HI molecularly investigated, with variants in five genes reported: USH2A, USH1G, USH1C, MYO7A, and PCDH15. MYO7A: p.(P1780S) founder variant was reported as the common Usher syndrome variant among Black South Africans. This review provides the most comprehensive data on HI gene variants in the largely under-investigated African populations. Future exomes studies particularly in multiplex families will likely provide opportunities for the discovery of the next sets of novel HI genes, and well as unreported variants in known genes to further our understanding of HI pathobiology, globally.
Assuntos
Síndromes de Usher , ATPases Vacuolares Próton-Translocadoras , Perfil Genético , Gana , Humanos , Mutação , Revisões Sistemáticas como Assunto , ATPases Vacuolares Próton-Translocadoras/genética , Sequenciamento do ExomaRESUMO
BACKGROUND: The introduction of rotavirus A vaccination across the developing world has not proved to be as efficacious as first hoped. One cause of vaccine failure may be infection by zoonotic rotaviruses that are very variable antigenically from the vaccine strain. However, there is a lack of genomic information about the circulating rotavirus A strains in farm animals in the developing world that may be a source of infection for humans. We therefore screened farms close to Accra, Ghana for animals sub-clinically infected with rotavirus A and then sequenced the virus found in one of these samples. RESULTS: 6.1% of clinically normal cows and pigs tested were found to be Rotavirus A virus antigen positive in the faeces. A subset of these (33.3%) were also positive for virus RNA. The most consistently positive pig sample was taken forward for metagenomic sequencing. This gave full sequence for all open reading frames except segment 5 (NSP1), which is missing a single base at the 5' end. The virus infecting this pig had genome constellation G5-P[7]-I5-R1-C1-M1-A8-N1-T7-E1-H1, a known porcine genotype constellation. CONCLUSIONS: Farm animals carry rotavirus A infection sub-clinically at low frequency. Although the rotavirus A genotype discovered here has a pig-like genome constellation, a number of the segments most closely resembled those isolated from humans in suspected cases of zoonotic transmission. Therefore, such viruses may be a source of variable gene segments for re-assortment with other viruses to cause vaccine breakdown. It is recommended that further human and pig strains are characterized in West Africa, to better understand this dynamic.
Assuntos
Infecções por Rotavirus/veterinária , Rotavirus/isolamento & purificação , Doenças dos Suínos/virologia , Animais , Bovinos , Doenças dos Bovinos/virologia , Fezes/virologia , Genoma Viral , Gana/epidemiologia , Filogenia , RNA Viral/isolamento & purificação , Rotavirus/genética , Infecções por Rotavirus/epidemiologia , Infecções por Rotavirus/virologia , Suínos , Doenças dos Suínos/epidemiologia , Zoonoses/virologiaRESUMO
HYPOTHESIS: Hearing instability in Slc26a4-insufficiency mice may be due to differential expression of genes related to ion homeostasis and activated macrophages. BACKGROUND: Hearing instability (HI) disorders, defined by either hearing fluctuation or sudden loss, remain incompletely understood. Recent studies have described a Slc26a4 (pendrin)-insufficiency mouse model (DE17.5) that offers a genetically driven model for HI, although deep audiometric and immunohistologic phenotyping of this model remains poorly characterized. METHODS: Homozygous DE17.5 mice with (F) and without (NF) HI were delineated by serial auditory brainstem responses (ABR) between postnatal days 30 and 60 and compared with adult phenotypically wild-type Slc26a4-heterozygous controls without evidence of HI (Het). HI was defined as a change in threshold of at least 15 dB in at least two frequencies or at least 20 dB in at least one frequency from the previous week. Stria vascularis (SV) cell type-specific gene expression, endolymphatic hydrops (EH), endocochlear potential (EP), and macrophage activation were analyzed and compared between the cohorts. RESULTS: F mice demonstrated significant reductions in the expression of cell type-specific genes related to ion homeostasis and increased macrophage activation within the SV compared with NF and Het cohorts. Both F and NF DE17.5 homozygous mice demonstrated reductions in EP and increased EH compared with the Het cohort. CONCLUSIONS: Deep phenotyping of DE17.5 mice demonstrates changes in EP and EH compared with control; however, the HI phenotype was associated with differential ion homeostasis gene expression and increased macrophage activation in the SV. This provides potential further insights into the underlying pathogenesis and possible immunologic contributions of HI in humans.
RESUMO
Globally, porcine rotavirus is a leading cause of gastroenteritis in nursing and post-weaning piglets, as well as adult pigs. Between February 2015 and June 2016, 156 fecal samples were collected from pigs in the Northeastern part of Accra, Ghana, and screened for Group A rotavirus using the ProflowTM Kit. Here, we describe different extraction methods that were employed to recover high-quality RNA for downstream analysis, with emphasis on a novel hybrid extraction method. The hybrid approach with a kit and manual extraction method led to a 10-fold greater RNA yield versus the kit-based method alone. The new extraction method gave an average purity ratio (A260/A280) of 1.8, which was also significantly higher than that obtained solely from the manual or kit-based extraction methods. Our novel hybrid approach will be useful in the extraction of rotavirus from animal fecal samples, thus improving the yield of RNA for downstream analysis. © 2024 Wiley Periodicals LLC. Basic Protocol: Hybrid 2: A double lysis method for RNA extraction from animal stool samples Support Protocol 1: The GenElute extraction method Support Protocol 2: Hybrid 1 extraction method.
Assuntos
Fezes , RNA Viral , Infecções por Rotavirus , Rotavirus , Animais , Fezes/virologia , Rotavirus/isolamento & purificação , Rotavirus/genética , Suínos/virologia , RNA Viral/isolamento & purificação , RNA Viral/genética , Infecções por Rotavirus/virologia , Infecções por Rotavirus/veterinária , Gana , Doenças dos Suínos/virologiaRESUMO
Coronavirus disease 2019 (COVID-19) pandemic, caused by the Severe Acute Coronavirus 2 (SARS-CoV-2), is a global health threat with extensive misinformation and conspiracy theories. Therefore, this study investigated the knowledge, attitude and perception of sub-Saharan Africans (SSA) on COVID-19 during the exponential phase of the pandemic. In this cross-sectional survey, self-administered web-based questionnaires were distributed through several online platforms. A total of 1046 respondents from 35 SSA countries completed the survey. The median age was 33 years (18-76 years) and about half (50.5%) of them were males. More than 40% across all socio-demographic categories except the Central African region (21.2%), vocational/secondary education (28.6%), student/unemployed (35.5%), had high COVID-19 knowledge score. Socio-demographic factors and access to information were associated with COVID-19 knowledge. Bivariate analysis revealed that independent variables, including the region of origin, age, gender, education and occupation, were significantly (p < 0.05) associated with COVID-19 knowledge. Multivariate analysis showed that residing in East (odds ratio [OR]: 7.9, 95% confidence interval (CI): 4.7-14, p<0.001), Southern (OR: 3.7, 95% CI: 2.1-6.5, p<0.001) and West (OR: 3.9, 95% CI: 2.9-5.2, p<0.001) Africa was associated with high COVID-19 knowledge level. Apart from East Africa (54.7%), willingness for vaccine acceptance across the other SSA regions was <40%. About 52%, across all socio-demographic categories, were undecided. Knowledge level, region of origin, age, gender, marital status and religion were significantly (p < 0.05) associated with COVID-19 vaccine acceptance. About 67.4% were worried about contracting SARS-CoV-2, while 65.9% indicated they would consult a health professional if exposed. More than one-third of the respondents reported that their governments had taken prompt measures to tackle the pandemic. Despite high COVID-19 knowledge in our study population, most participants were still undecided regarding vaccination, which is critical in eliminating the pandemic. Therefore, extensive, accurate, dynamic and timely education in this aspect is of ultimate priority.
Assuntos
COVID-19 , Masculino , Humanos , Adulto , Feminino , COVID-19/epidemiologia , Estudos Transversais , SARS-CoV-2 , Vacinas contra COVID-19 , Conhecimentos, Atitudes e Prática em Saúde , Pandemias , Inquéritos e Questionários , Percepção , África Subsaariana/epidemiologiaRESUMO
Early-onset diabetes is poorly diagnosed partly due to its heterogeneity and variable presentations. Although several genes have been associated with the disease, these genes are not well studied in Africa. We sought to identify the major neonatal, early childhood, juvenile, or early-onset diabetes genes in Africa; and evaluate the available molecular methods used for investigating these gene variants. A literature search was conducted on PubMed, Scopus, Africa-Wide Information, and Web of Science databases. The retrieved records were screened and analyzed to identify genetic variants associated with early-onset diabetes. Although 319 records were retrieved, 32 were considered for the current review. Most of these records (22/32) were from North Africa. The disease condition was genetically heterogenous with most cases possessing unique gene variants. We identified 22 genes associated with early-onset diabetes, 9 of which had variants (n = 19) classified as pathogenic or likely pathogenic (PLP). Among the PLP variants, IER3IP1: p.(Leu78Pro) was the variant with the highest number of cases. There was limited data from West Africa, hence the contribution of genetic variability to early-onset diabetes in Africa could not be comprehensively evaluated. It is worth mentioning that most studies were focused on natural products as antidiabetics and only a few studies reported on the genetics of the disease. ABCC8 and KCNJ11 were implicated as major contributors to early-onset diabetes gene networks. Gene ontology analysis of the network associated ion channels, impaired glucose tolerance, and decreased insulin secretions to the disease. Our review highlights 9 genes from which PLP variants have been identified and can be considered for the development of an African diagnostic panel. There is a gap in early-onset diabetes genetic research from sub-Saharan Africa which is much needed to develop a comprehensive, efficient, and cost-effective genetic panel that will be useful in clinical practice on the continent and among the African diasporas.
Assuntos
Diabetes Mellitus Tipo 2 , Pré-Escolar , Recém-Nascido , Humanos , Diabetes Mellitus Tipo 2/genética , Perfil Genético , África/epidemiologiaRESUMO
The genetic etiology of non-syndromic hearing impairment (NSHI) is highly heterogeneous with over 124 distinct genes identified. The wide spectrum of implicated genes has challenged the implementation of molecular diagnosis with equal clinical validity in all settings. Differential frequencies of allelic variants in the most common NSHI causal gene, gap junction beta 2 (GJB2), has been described as stemming from the segregation of a founder variant and/or spontaneous germline variant hot spots. We aimed to systematically review the global distribution and provenance of founder variants associated with NSHI. The study protocol was registered on PROSPERO, the International Prospective Register of Systematic Reviews, with the registration number "CRD42020198573". Data from 52 reports, involving 27,959 study participants from 24 countries, reporting 56 founder pathogenic or likely pathogenic (P/LP) variants in 14 genes (GJB2, GJB6, GSDME, TMC1, TMIE, TMPRSS3, KCNQ4, PJVK, OTOF, EYA4, MYO15A, PDZD7, CLDN14, and CDH23), were reviewed. Varied number short tandem repeats (STRs) and single nucleotide polymorphisms (SNPs) were used for haplotype analysis to identify the shared ancestral informative markers in a linkage disequilibrium and variants' origins, age estimates, and common ancestry computations in the reviewed reports. Asia recorded the highest number of NSHI founder variants (85.7%; 48/56), with variants in all 14 genes, followed by Europe (16.1%; 9/56). GJB2 had the highest number of ethnic-specific P/LP founder variants. This review reports on the global distribution of NSHI founder variants and relates their evolution to population migration history, bottleneck events, and demographic changes in populations linked with the early evolution of deleterious founder alleles. International migration and regional and cultural intermarriage, coupled to rapid population growth, may have contributed to re-shaping the genetic architecture and structural dynamics of populations segregating these pathogenic founder variants. We have highlighted and showed the paucity of data on hearing impairment (HI) variants in Africa, establishing unexplored opportunities in genetic traits.
Assuntos
Conexinas , Perda Auditiva , Humanos , Conexinas/genética , Conexina 26/genética , Genótipo , Mutação , Revisões Sistemáticas como Assunto , Perda Auditiva/genética , Transativadores/genética , Proteínas de Membrana/genética , Proteínas de Neoplasias/genética , Serina Endopeptidases/genéticaRESUMO
We recently showed that variants in GJB2 explained Hearing Impairment (HI) in 34.1% (n = 15/44) of multiplex families in Senegal. The present study aimed to use community-based nationwide recruitment to determine the etiologies and the clinical profiles of childhood HI in Senegal. Participants with early onset HI were included after clinical examination, including audiological assessment by pure tone audiometry and/or auditory brainstem response. We investigated a total of 406 participants from 295 families, recruited from 13/14 administrative regions of Senegal. Male/female ratio was 1.33 (232/174). Prelingual HI was the most common type of HI and accounted for 80% (n = 325 individuals). The mean age at medical diagnosis for congenital HI was computed at 3.59 ± 2.27 years. Audiological evaluation showed sensorineural HI as the most frequently observed HI (89.16%; n = 362 individuals). Pedigree analysis suggested autosomal recessive inheritance in 61.2% (63/103) of multiplex families and sporadic cases in 27 families (26.2%; 27/103), with a consanguinity rate estimated at 93% (84/90 families). Genetic factors were likely involved in 52.7% (214/406) of the cases, followed by environmental causes (29.57%; 120/406). In 72 cases (17.73%), the etiology was unknown. Clinically, non-syndromic HI was the most common type of HI (90.6%; n = 194/214 individuals). Among families segregating syndromic cases, type 2 Waardenburg syndrome was the most common (36.3%; 4/11 families). This study revealed putative genetic factors, mostly associated with high consanguinity rate, as the leading causes of early-onset HI in Senegal. The high consanguinity could provide a good opportunity to identify variants in known and novel genes involved in childhood HI.
Assuntos
Surdez , Perda Auditiva Neurossensorial , Perda Auditiva , Humanos , Masculino , Feminino , Lactente , Pré-Escolar , Senegal/epidemiologia , Mutação , Linhagem , Perda Auditiva/epidemiologia , Perda Auditiva/genética , Perda Auditiva Neurossensorial/epidemiologia , Perda Auditiva Neurossensorial/genéticaRESUMO
Hearing impairment (HI) is a silent planetary health crisis that requires attention worldwide. The prevalence of HI in South Africa is estimated as 5.5 in 100 live births, which is about 5 times higher than the prevalence in high-income countries. This also offers opportunity to drive progressive science, technology and innovation policy, and health systems. We present here a systematic analysis and review on the prevalence, etiologies, clinical patterns, and genetics/genomics of HI in South Africa. We searched PubMed, Scopus, African Journals Online, AFROLIB, and African Index Medicus to identify the pertinent studies on HI in South Africa, published from inception to April 30, 2021, and the data were summarized narratively. We screened 944 records, of which 27 studies were included in the review. The age at diagnosis is â¼3 years of age and the most common factor associated with acquired HI was middle ear infections. There were numerous reports on medication toxicity, with kanamycin-induced ototoxicity requiring specific attention when considering the high burden of tuberculosis in South Africa. The Waardenburg Syndrome is the most common reported syndromic HI. The Usher Syndrome is the only syndrome with genetic investigations, whereby a founder mutation was identified among black South Africans (MYO7A-c.6377delC). GJB2 and GJB6 genes are not major contributors to nonsyndromic HI among Black South Africans. Furthermore, emerging data using targeted panel sequencing have shown a low resolution rate in Black South Africans in known HI genes. Importantly, mutations in known nonsyndromic HI genes are infrequent in South Africa. Therefore, whole-exome sequencing appears as the most effective way forward to identify variants associated with HI in South Africa. Taken together, this article contributes to the emerging field of planetary health genomics with a focus on HI and offers new insights and lessons learned for future roadmaps on genomics/multiomics and clinical studies of HI around the world.
Assuntos
Surdez , Perda Auditiva , Surdez/genética , Genômica , Perda Auditiva/epidemiologia , Perda Auditiva/genética , Humanos , Mutação , África do Sul/epidemiologiaRESUMO
Epstein-Barr virus (EBV) is ubiquitous and carried by approximately 90% of the world's adult population. Several mechanisms and pathways have been proposed as to how EBV facilitates the pathogenesis and progression of malignancies, such as Hodgkin's lymphoma, Burkitt's lymphoma, nasopharyngeal carcinoma, and gastric cancers, the majority of which have been linked to viral proteins that are expressed upon infection including latent membrane proteins (LMPs) and Epstein-Barr virus nuclear antigens (EBNAs). EBV expresses microRNAs that facilitate the progression of some cancers. Mostly, EBV induces epigenetic silencing of tumor suppressor genes, degradation of tumor suppressor mRNA transcripts, post-translational modification, and inactivation of tumor suppressor proteins. This review summarizes the mechanisms by which EBV modulates different tumor suppressors at the molecular and cellular levels in associated cancers. Briefly, EBV gene products upregulate DNA methylases to induce epigenetic silencing of tumor suppressor genes via hypermethylation. MicroRNAs expressed by EBV are also involved in the direct targeting of tumor suppressor genes for degradation, and other EBV gene products directly bind to tumor suppressor proteins to inactivate them. All these processes result in downregulation and impaired function of tumor suppressors, ultimately promoting malignances.
Assuntos
Infecções por Vírus Epstein-Barr , Neoplasias Nasofaríngeas , Neoplasias Gástricas , Adulto , Epigênese Genética , Infecções por Vírus Epstein-Barr/genética , Genes Supressores de Tumor , Herpesvirus Humano 4/genética , Humanos , Neoplasias Nasofaríngeas/genética , Processamento de Proteína Pós-Traducional , Neoplasias Gástricas/genéticaRESUMO
Gap junction protein beta 2 (GJB2) (connexin 26) variants are commonly implicated in non-syndromic hearing impairment (NSHI). In Ghana, the GJB2 variant p.(Arg143Trp) is the largest contributor to NSHI and has a reported prevalence of 25.9% in affected multiplex families. To date, in the African continent, GJB2-p.(Arg143Trp) has only been reported in Ghana. Using whole-exome sequencing data from 32 individuals from 16 families segregating NSHI, and 38 unrelated hearing controls with the same ethnolinguistic background, we investigated the date and origin of p.(Arg143Trp) in Ghana using linked markers. With a Bayesian linkage disequilibrium gene mapping method, we estimated GJB2-p.(Arg143Trp) to have originated about 9625 years (385 generations) ago in Ghana. A haplotype analysis comparing data extracted from Ghanaians and those from the 1000 Genomes project revealed that GJB2-p.(Arg143Trp) is carried on different haplotype backgrounds in Ghanaian and Japanese populations, as well as among populations of European ancestry, lending further support to the multiple independent origins of the variant. In addition, we found substantial haplotype conservation in the genetic background of Ghanaian individuals with biallelic GJB2-p.(Arg143Trp) compared to the GJB2-p.(Arg143Trp)-negative group with normal hearing from Ghana, suggesting a strong evolutionary constraint in this genomic region in Ghanaian populations that are homozygous for GJB2-p.(Arg143Trp). The present study evaluates the age of GJB2-p.(Arg143Trp) at 9625 years and supports the multiple independent origins of this variant in the global population.
RESUMO
We have previously reported CLIC5A and SLC12A2 variants in two families from Cameroon and Ghana, segregating non-syndromic hearing impairment (NSHI). In this study, biological assays were performed to further functionally investigate the pathogenicity of CLIC5 [c.224T>C; p.(L75P)] and SCL12A2 [c.2935G>A: p.(E979K)] variants. Ectopic expression of the proteins in a cell model shows that compared to wild-type, both the CLIC5A and SLC12A2 variants were overexpressed. The mutant CLIC5A protein appears as aggregated perinuclear bodies while the wild-type protein was evenly distributed in the cytoplasm. Furthermore, cells transfected with the wild-type CLIC5A formed thin membrane filopodia-like protrusions which were absent in the CLIC5A mutant expressing and control cells. On the other hand, the wild-type SLC12A2 expressing cells had an axon-like morphology which was not observed in the mutant expressing and control cells. A network analysis revealed that CLIC5A can interact with at least eight proteins at the base of the stereocilia. This study has generated novel biological data associated with the pathogenicity of targeted variants in CLIC5A and SLC12A2, found in two African families, and therefore expands our understanding of their pathobiology in hearing impairment.
RESUMO
BACKGROUND: Childhood hearing impairment (HI) is genetically heterogeneous with many implicated genes, however, only a few of these genes are reported in African populations. METHODS: This study used exome and Sanger sequencing to resolve the possible genetic cause of non-syndromic HI in a Ghanaian family. RESULTS: We identified a novel variant c.3041G > A: p.(Gly1014Glu) in GREB1L (DFNA80) in the index case. The GREB1L: p.(Gly1014Glu) variant had a CADD score of 26.5 and was absent from human genomic databases such as TopMed and gnomAD. In silico homology protein modeling approaches displayed major structural differences between the wildtype and mutant proteins. Additionally, the variant was predicted to probably affect the secondary protein structure that may impact its function. Publicly available expression data shows a higher expression of Greb1L in the inner ear of mice during development and a reduced expression in adulthood, underscoring its importance in the development of the inner ear structures. CONCLUSION: This report on an African individual supports the association of GREB1L variant with non-syndromic HI and extended the evidence of the implication of GREB1L variants in HI in diverse populations.
Assuntos
Perda Auditiva , Adulto , Animais , Criança , Humanos , Camundongos , Exoma , Sequenciamento do Exoma , Gana , Perda Auditiva/genética , Mutação , Linhagem , Proteínas/genéticaRESUMO
BACKGROUND: Branchio-otic syndrome (BO) is one of the most common types of syndromic hearing impairment (HI) with an incidence of 1/40,000 globally. It is an autosomal dominant disorder typically characterized by the coexistence of branchial cysts or fistulae, malformations of the external, middle, and inner ears with preauricular pits or tags and a variable degree of HI. Most cases of BO have been reported in populations of European ancestry. To date, only few cases have been reported in people from African descent. METHODS: After a careful clinical examination, a pure tone audiometry was performed. DNA was extracted from peripheral blood and whole exome, and Sanger sequencing were performed for genetic analysis. RESULTS: Eight individuals from a large non-consanguineous Malian family, with autosomal dominant inheritance were enrolled. The ages at diagnosis ranged from 8 to 54 years. A high phenotypic variability was noted among the affected individuals. Four patients presented with a post-lingual and mixed type of HI, one individual had conductive HI while three had normal hearing but presented other BO features namely branchial fistulae and preauricular sinus. Serum creatinine level and renal ultrasonography were normal in three affected individuals who performed them. Genetic testing identified a monoallelic pathogenic variant in EYA1 (c.1286A > G; p.Asp429Gly) segregating with BO syndrome in the family. CONCLUSION: This is the first genetically confirmed case of BO syndrome caused by EYA1 variant in the sub-Saharan African population, expanding the genetic spectrum of the condition.
Assuntos
Perda Auditiva , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Nucleares , Proteínas Tirosina Fosfatases , Adolescente , Adulto , Síndrome Brânquio-Otorrenal , Criança , Perda Auditiva/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Pessoa de Meia-Idade , Proteínas Nucleares/genética , Linhagem , Proteínas Tirosina Fosfatases/genética , Adulto JovemRESUMO
This study aimed to investigate GJB2 (MIM: 121011) and GJB6 (MIM: 604418) variants associated with familial non-syndromic hearing impairment (HI) in Senegal. We investigated a total of 129 affected and 143 unaffected individuals from 44 multiplex families by segregating autosomal recessive non-syndromic HI, 9 sporadic HI cases of putative genetic origin, and 148 control individuals without personal or family history of HI. The DNA samples were screened for GJB2 coding-region variants and GJB6-D3S1830 deletions. The mean age at the medical diagnosis of the affected individuals was 2.93 ± 2.53 years [range: 1−15 years]. Consanguinity was present in 40 out of 53 families (75.47%). Variants in GJB2 explained HI in 34.1% (n = 15/44) of multiplex families. A bi-allelic pathogenic variant, GJB2: c.94C>T: p.(Arg32Cys) accounted for 25% (n = 11/44 families) of familial cases, of which 80% (n = 12/15) were consanguineous. Interestingly, the previously reported "Ghanaian" founder variant, GJB2: c.427C>T: p.(Arg143Trp), accounted for 4.5% (n = 2/44 families) of the families investigated. Among the normal controls, the allele frequency of GJB2: c.94C>T and GJB2: c.427C>T was estimated at 1% (2/148 ∗ 2) and 2% (4/148 ∗ 2), respectively. No GJB6-D3S1830 deletion was identified in any of the HI patients. This is the first report of a genetic investigation of HI in Senegal, and suggests that GJB2: c.94C>T: p.(Arg32Cys) and GJB2: c.427C>T: p.(Arg143Trp) should be tested in clinical practice for congenital HI in Senegal.
RESUMO
We investigated hearing impairment (HI) in 51 families from Ghana with at least two affected members that were negative for GJB2 pathogenic variants. DNA samples from 184 family members underwent whole-exome sequencing (WES). Variants were found in 14 known non-syndromic HI (NSHI) genes [26/51 (51.0%) families], five genes that can underlie either syndromic HI or NSHI [13/51 (25.5%)], and one syndromic HI gene [1/51 (2.0%)]. Variants in CDH23 and MYO15A contributed the most to HI [31.4% (16/51 families)]. For DSPP, an autosomal recessive mode of inheritance was detected. Post-lingual expression was observed for a family segregating a MARVELD2 variant. To our knowledge, seven novel candidate HI genes were identified (13.7%), with six associated with NSHI (INPP4B, CCDC141, MYO19, DNAH11, POTEI, and SOX9); and one (PAX8) with Waardenburg syndrome. MYO19 and DNAH11 were replicated in unrelated Ghanaian probands. Six of the novel genes were expressed in mouse inner ear. It is known that Pax8-/- mice do not respond to sound, and depletion of Sox9 resulted in defective vestibular structures and abnormal utricle development. Most variants (48/60; 80.0%) have not previously been associated with HI. Identifying seven candidate genes in this study emphasizes the potential of novel HI genes discovery in Africa.
Assuntos
Exoma , Perda Auditiva , Animais , Caderinas/genética , Gana , Perda Auditiva/genética , Humanos , Proteína 2 com Domínio MARVEL/genética , Camundongos , Mutação , Miosinas , Sequenciamento do Exoma/métodosRESUMO
Background: This study aimed to gain an understanding of the challenges faced by people with hearing impairment (HI) in Cameroon, their understanding of the causes of HI, and how challenges could be remedied to improve the quality of life of persons with HI. Methods: Semi-structured one-on-one in-depth interviews and observation of participant behaviour when answering questions were used to collect data from 10 HI professionals (healthcare workers and educationists), and 10 persons affected by HI (including caregivers). Results: The results show that the different groups associate the causes of HI to genetics, environmental factors, and a spiritual curse. There were reported cases of stigma and discrimination of persons with HI, with people sometimes referring to HI as an "intellectual disorder." Interviewees also highlighted the difficulty persons with HI have in accessing education and healthcare services and suggested the need for the government and health researchers to develop strategies for the prevention and early diagnosis of HI. These strategies include (1) the awareness of the general population regarding HI, (2) the development of facilities for the proper management and new-born screening of HI, and (3) the implementation of a premarital screening to reduce the burden of HI of genetic origin. Conclusions: This study confirms the difficult social interaction and access to proper management faced by persons with HI in Cameroon and further highlights the need to educate populations on the causes of HI for a better acceptance of individuals with HI in the Cameroonian society.
RESUMO
Despite advancements made toward diagnostics, tuberculosis caused by Mycobacterium africanum (Maf) and Mycobacterium tuberculosis sensu stricto (Mtbss) remains a major public health issue. Human host factors are key players in tuberculosis (TB) outcomes and treatment. Research is required to probe the interplay between host and bacterial genomes. Here, we explored the association between selected human/host genomic variants and TB disease in Ghana. Paired host genotype datum and infecting bacterial isolate information were analyzed for associations using a multinomial logistic regression. Mycobacterium tuberculosis complex (MTBC) isolates were obtained from 191 TB patients and genotyped into different phylogenetic lineages by standard methods. Two hundred and thirty-five (235) nondisease participants were used as healthy controls. A selection of 29 SNPs from TB disease-associated genes with high frequency among African populations was assayed using a TaqMan® SNP Genotyping Assay and iPLEX Gold Sequenom Mass Genotyping Array. Using 26 high-quality SNPs across 326 case-control samples in an association analysis, we found a protective variant, rs955263, in the SORBS2 gene against both Maf and Mtb infections (P BH = 0.05; OR = 0.33; 95% CI = 0.32-0.34). A relatively uncommon variant, rs17235409 in the SLC11A1 gene was observed with an even stronger protective effect against Mtb infection (MAF = 0.06; PBH = 0.04; OR = 0.05; 95% CI = 0.04-0.05). These findings suggest SLC11A1 and SORBS2 as a potential protective gene of substantial interest for TB, which is an important pathogen in West Africa, and highlight the need for in-depth host-pathogen studies in West Africa.
RESUMO
Mutations in connexins are the most common causes of hearing impairment (HI) in many populations. Our aim was to review the global burden of pathogenic and likely pathogenic (PLP) variants in connexin genes associated with HI. We conducted a systematic review of the literature based on targeted inclusion/exclusion criteria of publications from 1997 to 2020. The databases used were PubMed, Scopus, Africa-Wide Information, and Web of Science. The protocol was registered on PROSPERO, the International Prospective Register of Systematic Reviews, with the registration number "CRD42020169697". The data extracted were analyzed using Microsoft Excel and SPSS version 25 (IBM, Armonk, New York, United States). A total of 571 independent studies were retrieved and considered for data extraction with the majority of studies (47.8% (n = 289)) done in Asia. Targeted sequencing was found to be the most common technique used in investigating connexin gene mutations. We identified seven connexin genes that were associated with HI, and GJB2 (520/571 publications) was the most studied among the seven. Excluding PLP in GJB2, GJB6, and GJA1 the other connexin gene variants (thus GJB3, GJB4, GJC3, and GJC1 variants) had conflicting association with HI. Biallelic GJB2 PLP variants were the most common and widespread variants associated with non-syndromic hearing impairment (NSHI) in different global populations but absent in most African populations. The most common GJB2 alleles found to be predominant in specific populations include; p.Gly12ValfsTer2 in Europeans, North Africans, Brazilians, and Americans; p.V37I and p.L79Cfs in Asians; p.W24X in Indians; p.L56Rfs in Americans; and the founder mutation p.R143W in Africans from Ghana, or with putative Ghanaian ancestry. The present review suggests that only GJB2 and GJB3 are recognized and validated HI genes. The findings call for an extensive investigation of the other connexin genes in many populations to elucidate their contributions to HI, in order to improve gene-disease pair curations, globally.