Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
J Chem Phys ; 156(1): 014203, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34998354

RESUMO

Hypericin tautomerization that involves the migration of the labile protons is believed to be the primary photophysical process relevant to its light-activated antiviral activity. Despite the difficulty in isolating individual tautomers, it can be directly observed in single-molecule experiments. We show that the tautomerization of single hypericin molecules in free space is observed as an abrupt flipping of the image pattern accompanied with fluorescence intensity fluctuations, which are not correlated with lifetime changes. Moreover, the study can be extended to a λ/2 Fabry-Pérot microcavity. The modification of the local photonic environment by a microcavity is well simulated with a theoretical model that shows good agreement with the experimental data. Inside a microcavity, the excited state lifetime and fluorescence intensity of single hypericin molecules are correlated, and a distinct jump of the lifetime and fluorescence intensity reveals the temporal behavior of the tautomerization with high sensitivity and high temporal resolution. The observed changes are also consistent with time-dependent density functional theory calculations. Our approach paves the way to monitor and even control reactions for a wider range of molecules at the single molecule level.


Assuntos
Antracenos/química , Perileno/análogos & derivados , Teoria da Densidade Funcional , Perileno/química , Prótons
2.
J Chem Phys ; 156(3): 034702, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35065565

RESUMO

Confocal optical microscopy and tip-enhanced optical microscopy are applied to characterize the defect distributions in chemical vapor deposition-grown WS2 monolayer triangles qualitatively and quantitatively. The presence of defects in individual monolayer WS2 triangles is revealed with diffraction-limited spatial resolution in their photoluminescence (PL) images, from which the inhomogeneous defect density distribution is calculated, showing an inverse relationship to the PL intensity. The defect-related surface-enhanced Raman spectroscopy (SERS) effect is investigated by depositing a thin copper phthalocyanine layer (5 nm) as the probe molecule on the monolayer WS2 triangles surface. Higher SERS enhancement effects are observed at the defect-rich areas. Furthermore, tip-enhanced optical measurements are performed, which can reveal morphologically defected areas invisible in the confocal optical measurements. Furthermore, the area with high defect density appears brighter than the low-defected area in the tip-enhanced optical measurements, which are different from the observation in the confocal optical measurements. The underlying reasons are attributed to the near-field enhancement of the defect exciton emission induced by the optically excited tip and to an improved coupling efficiency between the tip-generated near-field with the altered dipole moment orientation at the local defect.

3.
Molecules ; 27(16)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36014328

RESUMO

Surface-enhanced Raman spectroscopy (SERS) provides a strong enhancement to an inherently weak Raman signal, which strongly depends on the material, design, and fabrication of the substrate. Here, we present a facile method of fabricating a non-uniform SERS substrate based on an annealed thin gold (Au) film that offers multiple resonances and gap sizes within the same sample. It is not only chemically stable, but also shows reproducible trends in terms of geometry and plasmonic response. Scanning electron microscopy (SEM) reveals particle-like and island-like morphology with different gap sizes at different lateral positions of the substrate. Extinction spectra show that the plasmonic resonance of the nanoparticles/metal islands can be continuously tuned across the substrate. We observed that for the analytes 1,2-bis(4-pyridyl) ethylene (BPE) and methylene blue (MB), the maximum SERS enhancement is achieved at different lateral positions, and the shape of the extinction spectra allows for the correlation of SERS enhancement with surface morphology. Such non-uniform SERS substrates with multiple nanoparticle sizes, shapes, and interparticle distances can be used for fast screening of analytes due to the lateral variation of the resonances within the same sample.


Assuntos
Ouro , Nanopartículas , Ouro/química , Microscopia Eletrônica de Varredura , Nanopartículas/química , Análise Espectral Raman/métodos
4.
Opt Express ; 29(10): 14799-14814, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33985194

RESUMO

A single metallic nanodisk is the simplest plasmonic nanostructure, but it is robust enough to generate a Fano resonance in the forward and backward scattering spectra by the increment of nanodisk height in the symmetric and asymmetric dielectric environment. Thanks to the phase retardation effect, the non-uniform distribution of electric field along the height of aluminum (Al) nanodisk generates the out-of-plane higher-order modes, which interfere with the dipolar mode and subsequently result in the Fano-lineshape scattering spectra. Meanwhile, the symmetry-breaking effect by the dielectric substrate and the increment of refractive index of the symmetric dielectric environment further accelerate the phase retardation effect and contribute to the appearance of out-of-plane modes. The experimental results on the periodic Al nanodisk arrays with different heights confirm the retardation-induced higher modes in the asymmetric and symmetric environment. The appearance of higher modes and blueshifted main dips in the transmission spectra prove the dominant role of out-of-plane higher modes on the plasmonic resonances of the taller Al nanodisk.

5.
J Chem Phys ; 154(7): 074701, 2021 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-33607882

RESUMO

Avalanche multiphoton photoluminescence (AMPL) is observed from coupled Au-Al nanoantennas under intense laser pumping, which shows more than one order of magnitude emission intensity enhancement and distinct spectral features compared with ordinary metallic photoluminescence. The experiments are conducted by altering the incident laser intensity and polarization using a home-built scanning confocal optical microscope. The results show that AMPL originates from the recombination of avalanche hot carriers that are seeded by multiphoton ionization. Notably, at the excitation stage, multiphoton ionization is shown to be assisted by the local electromagnetic field enhancement produced by coupled plasmonic modes. At the emission step, the giant AMPL intensity can be evaluated as a function of the local field environment and the thermal factor for hot carriers, in accordance with a linear relationship between the power law exponent coefficient and the emitted photon energy. The dramatic change in the spectral profile is explained by spectral linewidth broadening mechanisms. This study offers nanospectroscopic evidence of both the potential optical damages for plasmonic nanostructures and the underlying physical nature of light-matter interactions under a strong laser field; it illustrates the significance of the emerging topics of plasmonic-enhanced spectroscopy and laser-induced breakdown spectroscopy.

6.
Nanotechnology ; 31(37): 375203, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32434165

RESUMO

Improved performance in flexible organic light-emitting diodes (OLEDs) is demonstrated by using a hybrid nanostructured plasmonic electrode consisting of silver nanowires (AgNWs) decorated with silver nanoparticles (AgNPs) and covered by exfoliated graphene sheets. Such all-solution processed electrodes show high optical transparency and electrical conductivity. When integrated in an OLED with super yellow polyphenylene vinylene as the emissive layer, the plasmon coupling of the NW-NP hybrid plasmonic system is found to significantly enhance the fluorescence, demonstrated by both simulations and photoluminescence measurements, leading to a current efficiency of 11.61 cd A-1 and a maximum luminance of 20 008 cd m-2 in OLEDs. Stress studies reveal a superior mechanical flexibility to the commercial indium-tin-oxide (ITO) counterparts, due to the incorporation of exfoliated graphene sheets. Our results show that these hybrid nanostructured plasmonic electrodes can be applied as an effective alternative to ITO for use in high-performance flexible OLEDs.

7.
J Phys Chem A ; 124(12): 2497-2504, 2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32126168

RESUMO

Hypericin is one of the most efficient photosensitizers used in photodynamic tumor therapy (PDT). The reported treatments of this drug reach from antidepressive, antineoplastic, antitumor and antiviral activity. We show that hypericin can be optically detected down to a single molecule at ambient conditions. Hypericin can even be observed inside of a cancer cell, which implies that this drug can be directly used for advanced microscopy techniques (PALM, spt-PALM, or FLIM). Its photostability is large enough to obtain single molecule fluorescence, surface enhanced Raman spectra (SERS), fluorescence lifetime, antibunching, and blinking dynamics. Sudden spectral changes can be associated with a reorientation of the molecule on the particle surface. These properties of hypericin are very sensitive to the local environment. Comparison of DFT calculations with SERS spectra show that both the neutral and deprotonated form of hypericin can be observed on the single molecule and ensemble level.


Assuntos
Perileno/análogos & derivados , Fármacos Fotossensibilizantes/química , Antracenos , Linhagem Celular Tumoral , Teoria da Densidade Funcional , Fluorescência , Humanos , Microscopia de Fluorescência , Modelos Químicos , Perileno/química , Imagem Individual de Molécula , Análise Espectral Raman
8.
Nanotechnology ; 30(41): 415201, 2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31339108

RESUMO

Gold nanocones acting as optical antennas offer an excellent geometry for focusing light near the cone tip, acting as nano-light sources with spot sizes on the order of the tip radius. However only the vertical plasmon mode oscillating in the axial direction can effectively excite the tip, whereas lateral modes oscillating along the cone base create mostly unwanted background in applications. The present work investigates the three-dimensional plasmonic mode structure of nanocones both experimentally and numerically. By tuning the nanocone aspect ratio, the modes can be spectrally tuned relative to each other, making them coincide for maximum excitation, or tuning the base mode away from the vertical mode for effective background suppression.

9.
J Opt Soc Am A Opt Image Sci Vis ; 36(11): C78-C84, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31873698

RESUMO

We evaluate experimentally and theoretically the role of the residual ligands and ambient environment refractive index in the optical response of a single spherical gold nanoparticle on a substrate and demonstrate the changes in the near- and far-field properties of its hybridized modes in the presence of the cetyltrimethylammonium bromide (CTAB) layer. Particularly, we show that the conventional bilayer scheme for CTAB is not relevant for colloidal nanoparticles deposited on a substrate. We show that this CTAB layer considerably changes the amplitude and localization of the confinement of the electric field, which is of prime importance in the design of plasmonic complex systems coupled to emitters. Moreover, we numerically study the influence of the CTAB layer on the modification of sensitivity of plasmonic resonances of a gold nanopshere to local refractive index changes.

10.
Opt Express ; 26(5): 6439-6445, 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29529836

RESUMO

The optical characterization of a single metallic nanostructure has a strong interest in the scientific community owing to its localized surface plasmon resonances. For a single nano-object, the simplest and the accepted optical characterization technique is dark-field spectroscopy, even if there are many drawbacks and a certain complexity to operate it. We propose here using extinction spectroscopy of nanoparticles ensembles to characterize optically a single nanostructure. The scattering spectrum of a single gold nanocylinder and the extinction spectrum of a well-chosen array show similar results. We perform an experimental and numerical comparative study to draw parallels between both techniques.

11.
Sensors (Basel) ; 17(2)2017 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-28134754

RESUMO

Metallic nanoparticles are considered as active supports in the development of specific chemical or biological biosensors. Well-organized nanoparticles can be prepared either through expensive (e.g., electron beam lithography) or inexpensive (e.g., thermal synthesis) approaches where different shapes of nanoparticles are easily obtained over large solid surfaces. Herein, the authors propose a low-cost thermal synthesis of active plasmonic nanostructures on thin gold layers modified glass supports after 1 h holding on a hot plate (~350 °C). The resulted annealed nanoparticles proved a good reproducibility of localized surface plasmon resonance (LSPR) and surface enhanced Raman spectroscopy (SERS) optical responses and where used for the detection of low concentrations of two model (bio)chemical molecules, namely the human cytochrome b5 (Cyt-b5) and trans-1,2-bis(4-pyridyl)ethylene (BPE).


Assuntos
Nanoestruturas , Ouro , Reprodutibilidade dos Testes , Análise Espectral Raman , Ressonância de Plasmônio de Superfície
12.
Opt Express ; 24(19): 21244-55, 2016 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-27661868

RESUMO

Surface-enhanced Raman spectroscopy (SERS) is widely used to sensitively detect molecules or markers in pharmacology, biology, etc. We study numerically the possibility to realize SERS detections directly on a photonic chip. It is presented that a SERS sensor created by combining a gold slot waveguide and a Si3N4 strip waveguide can be designed to excite enhanced Raman effects and extract their scattering signals on a chip. Using 3D finite-difference time-domain simulations, the SERS processes, excitation of surface plasmon in slots and radiation of induced Raman dipoles, are analyzed to simulate SERS detections in reality. It demonstrates the influence of the geometrical parameters on the electromagnetic fields in slots and therefore the local enhancements, based on the |E|4-approximation. The results show that a SERS nanosensor can be achieved based on the hybrid waveguide. The integration of this sensor with a micro-laser and a micro-demultiplexer, could achieve an on-a-chip and fully integrated system for portable and fast SERS detections.

13.
Opt Express ; 24(2): A168-73, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26832570

RESUMO

nonresonant surface enhanced Raman scattering by optical phonons of ZnO nanocrystals on and beneath silver and gold island films is reported. For both configurations comparable SERS efficiency is observed, proving their potential utility. Variations in peak intensities can be attributed to difference in the morphology of island films on and beneath nanocrystals as well as to variation of the interface between semiconductor and metal. The dominant peaks in the SERS spectra are assigned to surface optical phonon modes.

14.
Environ Sci Technol ; 50(17): 9370-9, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27472045

RESUMO

The lack of characterization factors (CFs) for engineered nanoparticles (ENPs) hampers the application of life cycle assessment (LCA) methodology in evaluating the potential environmental impacts of nanomaterials. Here, the framework of the USEtox model has been selected to solve this problem. On the basis of colloid science, a fate model for ENPs has been developed to calculate the freshwater fate factor (FF) of ENPs. We also give the recommendations for using the hydrological data from the USEtox model. The functionality of our fate model is proved by comparing our computed results with the reported scenarios in North America, Switzerland, and Europe. As a case study, a literature survey of the nano-Cu toxicology values has been performed to calculate the effect factor (EF). Seventeen freshwater CFs of nano-Cu are proposed as recommended values for subcontinental regions. Depending on the regions and the properties of the ENPs, the region most likely to be affected by nano-Cu is Africa (CF of 11.11 × 10(3) CTUe, comparative toxic units) and the least likely is north Australia (CF of 3.87 × 10(3) CTUe). Furthermore, from the sensitivity analysis of the fate model, 13 input parameters (such as depth of freshwater, radius of ENPs) show vastly different degrees of influence on the outcomes. The characterization of suspended particles in freshwater and the dissolution rate of ENPs are two significant factors.


Assuntos
Cobre , Água Doce , Humanos , Modelos Teóricos , Nanopartículas , Nanoestruturas
15.
Nanotechnology ; 25(22): 225603, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24830364

RESUMO

We report here an original single-step process for the synthesis and self-organization of gold colloids by simply incorporating gold salts into a solution prepared using polystyrene (PS)-polymethylmethacrylate copolymer and thiolated PS with propylene glycol methyl ether acetate as a solvent. The spin-coating and annealing of this solution then allows the formation of PS domains. Depending on the polymer concentration of the as-prepared solution, there can be either one or several gold nanoparticles (Au NPs) per PS domain. For high concentrations of Au NPs in PS domains, the coupling between plasmonic NPs leads to the observation of a second peak in the optical extinction spectrum. Such a collective effect could be relevant for the development of optical strain sensors in the near future.


Assuntos
Coloide de Ouro/síntese química , Nanopartículas Metálicas , Metacrilatos/química , Poliestirenos/química , Nanopartículas Metálicas/ultraestrutura
16.
Nano Lett ; 13(1): 282-6, 2013 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-23249360

RESUMO

In this Letter, we demonstrate a reversible strong coupling regime between a dipolar surface plasmon resonance and a molecular excited state. This reversible state is experimentally observed on silver nanoparticle arrays embedded in a polymer film containing photochromic molecules. Extinction measurements reveal a clear Rabi splitting of 294 meV, corresponding to ~13% of the molecular transition energy. We derived an analytical model to confirm our observations, and we emphasize the importance of spectrally matching the polymer absorption with the plasmonic resonance to observe coupled states. Finally, the reversibility of this coupling is illustrated by cycling the photochromic molecules between their two isomeric forms.

17.
Analyst ; 138(4): 1015-9, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23304693

RESUMO

A commercial TEM grid was used as a mask for the creation of extremely well-organized gold micro-/nano-structures on a glass substrate via a high temperature annealing process at 500 °C. The structured substrate was (bio)functionalized and used for the high throughput LSPR immunosensing of different concentrations of a model protein named bovine serum albumin.


Assuntos
Ouro/química , Ensaios de Triagem em Larga Escala/métodos , Nanopartículas Metálicas/química , Soroalbumina Bovina/análise , Animais , Bovinos , Análise Custo-Benefício , Ouro/economia , Ensaios de Triagem em Larga Escala/economia , Nanopartículas Metálicas/economia , Nanoestruturas/química , Nanoestruturas/economia
18.
Phys Chem Chem Phys ; 15(21): 8031-4, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23519365

RESUMO

The influences of compositional asymmetry on the two-photon photoluminescence and the second harmonic generation processes in weakly coupled plasmonic dimers were addressed. Au-Au homodimer and Au-Ag heterodimer arrays produced using electron-beam lithography were investigated using confocal nonlinear optical imaging and spectroscopy. Compared to the Au-Au homodimers, the Au-Ag dimers showed slightly broadened two-photon photoluminescence near the X symmetry point at the first Brillouin zone of Au, whilst that from the L symmetry point stayed the same. Additionally, weakly coupled Au-Ag heterodimers generated strong second harmonic signals which were invisible in the Au-Au homodimers. The observations highlighted the importance of compositional asymmetry in the non-linear optical studies of plasmonic dimers.

19.
J Phys Chem Lett ; 14(35): 7824-7832, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37624618

RESUMO

Hyperbolic metaparticles have emerged as the next step in metamaterial applications, providing tunable electromagnetic properties on demand. However, coupling of optical modes in hyperbolic meta-antennas has not been explored. Here, we present in detail the magnetic and electric dipolar modes supported by a hyperbolic bowtie meta-antenna and clearly demonstrate the existence of two magnetic coupling regimes in such hyperbolic systems. The coupling nature is shown to depend on the interplay of the magnetic dipole moments, controlled by the meta-antenna effective permittivity and nanogap size. In parallel, the meta-antenna effective permittivity offers fine control over the electrical field spatial distribution. Our work highlights new coupling mechanisms between hyperbolic systems that have not been reported before, with a detailed study of the magnetic coupling nature, as a function of the structural parameters of the hyperbolic meta-antenna, which opens the route toward a range of applications from magnetic nanolight sources to chiral quantum optics and quantum interfaces.

20.
Beilstein J Nanotechnol ; 13: 572-581, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860454

RESUMO

Using a triangular molybdenum diselenide (MoSe2) flake as surface-enhanced Raman spectroscopy (SERS) platform, we demonstrate the dependency of the Raman enhancement on laser beam polarization and local structure using copper phthalocyanine (CuPc) as probe. Second harmonic generation (SHG) and photoluminescence spectroscopy and microscopy are used to reveal the structural irregularities of the MoSe2 flake. The Raman enhancement in the focus of an azimuthally polarized beam, which possesses exclusively an in-plane electric field component is stronger than the enhancement by a focused radially polarized beam, where the out-of-plane electric field component dominates. This phenomenon indicates that the face-on oriented CuPc molecules strongly interact with the MoSe2 flake via charge transfer and dipole-dipole interaction. Furthermore, the Raman scattering maps on the irregular MoSe2 surface show a distinct correlation with the SHG and photoluminescence optical images, indicating the relationship between local structure and optical properties of the MoSe2 flake. These results contribute to understand the impacts of local structural properties on the Raman enhancement at the surface of the 2D transition-metal dichalcogenide.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA