Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur Phys J A Hadron Nucl ; 59(2): 15, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36751673

RESUMO

Muonic atom spectroscopy-the measurement of the x rays emitted during the formation process of a muonic atom-has a long standing history in probing the shape and size of nuclei. In fact, almost all stable elements have been subject to muonic atom spectroscopy measurements and the absolute charge radii extracted from these measurements typically offer the highest accuracy available. However, so far only targets of at least a few hundred milligram could be used as it required to stop a muon beam directly in the target to form the muonic atom. We have developed a new method relying on repeated transfer reactions taking place inside a 100 bar hydrogen gas cell with an admixture of 0.25% deuterium that allows us to drastically reduce the amount of target material needed while still offering an adequate efficiency. Detailed simulations of the transfer reactions match the measured data, suggesting good understanding of the processes taking place inside the gas mixture. As a proof of principle we demonstrate the method with a measurement of the 2p-1s muonic x rays from a 5  µ g gold target.

2.
Phys Rev Lett ; 85(8): 1642-5, 2000 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-10970578

RESUMO

Resonant formation of d&mgr;t molecules in collisions of muonic tritium ( &mgr;t) on D2 was investigated using a beam of &mgr;t atoms, demonstrating a new direct approach in muon catalyzed fusion studies. Strong epithermal resonances in d&mgr;t formation were directly revealed for the first time. From the time-of-flight analysis of 2036+/-116 dt fusion events, a formation rate consistent with 0.73+/-(0.16)(meas)+/-(0.09)(model) times the theoretical prediction was obtained. For the largest peak at a resonance energy of 0.423+/-0.037 eV, this corresponds to a rate of (7.1+/-1.8)x10(9) s(-1), more than an order of magnitude larger than those at low energies.

3.
Phys Rev Lett ; 86(17): 3763-6, 2001 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-11329318

RESUMO

Measurements of muon-catalyzed dt fusion ( d(mu)t-->4He + n + mu(-)) in solid HD have been performed. The theory describing the energy dependent resonant molecular formation rate for the reaction (mu)t + HD-->[(d(mu)t)pee](*) is compared to experimental results in a pure solid HD target. Constraints on the rates are inferred through the use of a Monte Carlo model developed specifically for the experiment. From the time-of-flight analysis of fusion events in 16 and 37 microg x cm(-2) targets, an average formation rate consistent with 0.897+/-(0.046)(stat)+/-(0.166)(syst) times the theoretical prediction was obtained.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA