Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38338909

RESUMO

Pancreatic cancer represents a formidable challenge in oncology, primarily due to its aggressive nature and limited therapeutic options. The prognosis of patients with pancreatic ductal adenocarcinoma (PDAC), the main form of pancreatic cancer, remains disappointingly poor with a 5-year overall survival of only 5%. Almost 95% of PDAC patients harbor Kirsten rat sarcoma virus (KRAS) oncogenic mutations. KRAS activates downstream intracellular pathways, most notably the rapidly accelerated fibrosarcoma (RAF)/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling axis. Dysregulation of the RAF/MEK/ERK pathway is a crucial feature of pancreatic cancer and therefore its main components, RAF, MEK and ERK kinases, have been targeted pharmacologically, largely by small-molecule inhibitors. The recent advances in the development of inhibitors not only directly targeting the RAF/MEK/ERK pathway but also indirectly through inhibition of its regulators, such as Src homology-containing protein tyrosine phosphatase 2 (SHP2) and Son of sevenless homolog 1 (SOS1), provide new therapeutic opportunities. Moreover, the discovery of allele-specific small-molecule inhibitors against mutant KRAS variants has brought excitement for successful innovations in the battle against pancreatic cancer. Herein, we review the recent advances in targeted therapy and combinatorial strategies with focus on the current preclinical and clinical approaches, providing critical insight, underscoring the potential of these efforts and supporting their promise to improve the lives of patients with PDAC.


Assuntos
Carcinoma Ductal Pancreático , Fibrossarcoma , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Proto-Oncogênicas c-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-raf/metabolismo
2.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000206

RESUMO

The development of vaccines has drastically reduced the mortality and morbidity of several diseases. Despite the great success of vaccines, the immunological processes involved in protective immunity are not fully understood and several issues remain to be elucidated. Recently, the advent of high-throughput technologies has enabled a more in-depth investigation of the immune system as a whole and the characterization of the interactions of numerous components of immunity. In the field of vaccinology, these tools allow for the exploration of the molecular mechanisms by which vaccines can induce protective immune responses. In this review, we aim to describe current data on transcriptional responses to vaccination, focusing on similarities and differences of vaccine-induced transcriptional responses among vaccines mostly in healthy adults, but also in high-risk populations, such as the elderly and children. Moreover, the identification of potential predictive biomarkers of vaccine immunogenicity, the effect of age on transcriptional response and future perspectives for the utilization of transcriptomics in the field of vaccinology will be discussed.


Assuntos
Medicina de Precisão , Vacinação , Vacinas , Humanos , Medicina de Precisão/métodos , Vacinas/imunologia , Perfilação da Expressão Gênica/métodos , Transcriptoma , Transcrição Gênica , Animais
3.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731852

RESUMO

Lung cancer, despite recent advancements in survival rates, represents a significant global health burden. Non-small cell lung cancer (NSCLC), the most prevalent type, is driven largely by activating mutations in Kirsten rat sarcoma viral oncogene homologue (KRAS) and receptor tyrosine kinases (RTKs), and less in v-RAF murine sarcoma viral oncogene homolog B (BRAF) and mitogen-activated protein-kinase kinase (MEK), all key components of the RTK-RAS-mitogen-activated protein kinase (MAPK) pathway. Learning from melanoma, the identification of BRAFV600E substitution in NSCLC provided the rationale for the investigation of RAF and MEK inhibition as a therapeutic strategy. The regulatory approval of two RAF-MEK inhibitor combinations, dabrafenib-trametinib, in 2017, and encorafenib-binimetinib, in 2023, signifies a breakthrough for the management of BRAFV600E-mutant NSCLC patients. However, the almost universal emergence of acquired resistance limits their clinical benefit. New RAF and MEK inhibitors, with distinct biochemical characteristics, are in preclinical and clinical development. In this review, we aim to provide valuable insights into the current state of RAF and MEK inhibition in the management of NSCLC, fostering a deeper understanding of the potential impact on patient outcomes.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Quinases de Proteína Quinase Ativadas por Mitógeno , Inibidores de Proteínas Quinases , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Animais , Quinases raf/antagonistas & inibidores , Quinases raf/metabolismo , Quinases raf/genética , Mutação
4.
Int J Mol Sci ; 25(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38791330

RESUMO

Bone mechanotransduction is a critical process during skeletal development in embryogenesis and organogenesis. At the same time, the type and level of mechanical loading regulates bone remodeling throughout the adult life. The aberrant mechanosensing of bone cells has been implicated in the development and progression of bone loss disorders, but also in the bone-specific aspect of other clinical entities, such as the tumorigenesis of solid organs. Novel treatment options have come into sight that exploit the mechanosensitivity of osteoblasts, osteocytes, and chondrocytes to achieve efficient bone regeneration. In this regard, runt-related transcription factor 2 (Runx2) has emerged as a chief skeletal-specific molecule of differentiation, which is prominent to induction by mechanical stimuli. Polycystins represent a family of mechanosensitive proteins that interact with Runx2 in mechano-induced signaling cascades and foster the regulation of alternative effectors of mechanotransuction. In the present narrative review, we employed a PubMed search to extract the literature concerning Runx2, polycystins, and their association from 2000 to March 2024. The keywords stated below were used for the article search. We discuss recent advances regarding the implication of Runx2 and polycystins in bone remodeling and regeneration and elaborate on the targeting strategies that may potentially be applied for the treatment of patients with bone loss diseases.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core , Mecanotransdução Celular , Canais de Cátion TRPP , Humanos , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Canais de Cátion TRPP/metabolismo , Canais de Cátion TRPP/genética , Animais , Osso e Ossos/metabolismo , Remodelação Óssea , Regeneração Óssea , Osteócitos/metabolismo
5.
Clin Oral Investig ; 24(6): 1987-1995, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31444694

RESUMO

OBJECTIVES: Periodontitis is a highly prevalent chronic inflammatory disease caused by periodontopathogens, such as Filifactor alocis. This study sought to examine the matrix metalloproteinase (MMP)-1 synthesis by monocytic and fibroblastic cells in response to F. alocis and to unravel the underlying cellular mechanisms. MATERIAL AND METHODS: Gingival biopsies from periodontally healthy and periodontitis individuals were analyzed for the presence of F. alocis and MMP-1 by RT-PCR. Human gingival fibroblastic (HGF-1) and monocytic (THP-1) cells were stimulated with F. alocis in the presence and absence of a blocking toll-like receptor (TLR)2 antibody or specific inhibitors against MAPKs. MMP-1 expression and protein levels were studied by RT-PCR and ELISA, respectively. RESULTS: F. alocis was highly prevalent in biopsies from periodontitis patients but barely present in the healthy gingiva. Significantly higher MMP-1 expression levels were found in the inflamed gingiva as compared with healthy biopsies. F. alocis caused a significant and dose-dependent MMP-1 upregulation in both cells. The stimulatory effect of F. alocis on MMP-1 was TLR2- and MAPK-dependent and more pronounced on THP-1 cells as compared with HGF-1 cells. CONCLUSIONS: Our results demonstrate that F. alocis and MMP-1 are more prevalent at periodontitis sites. Additionally, our study provides original evidence that F. alocis can stimulate MMP-1 production by fibroblastic and monocytic cells, suggesting that F. alocis may contribute to periodontal breakdown through MMP-1. CLINICAL RELEVANCE: F. alocis and MMP-1 are linked to each other and key players in periodontitis, which may have significant implications for future diagnostic and treatment strategies.


Assuntos
Clostridiales , Metaloproteinase 1 da Matriz , Periodontite , Clostridiales/fisiologia , Fibroblastos , Gengiva/metabolismo , Humanos , Metaloproteinase 1 da Matriz/metabolismo , Periodontite/metabolismo , Periodontite/microbiologia
6.
Cell Mol Life Sci ; 74(5): 921-936, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27699453

RESUMO

Polycystin-1 (PC1) has been proposed as a chief mechanosensing molecule implicated in skeletogenesis and bone remodeling. Mechanotransduction via PC1 involves proteolytic cleavage of its cytoplasmic tail (CT) and interaction with intracellular pathways and transcription factors to regulate cell function. Here we demonstrate the interaction of PC1-CT with JAK2/STAT3 signaling axis in mechanically stimulated human osteoblastic cells, leading to transcriptional induction of Runx2 gene, a master regulator of osteoblastic differentiation. Primary osteoblast-like PC1-expressing cells subjected to mechanical-stretching exhibited a PC1-dependent increase of the phosphorylated(p)/active form of JAK2. Specific interaction of PC1-CT with pJAK2 was observed after stretching while pre-treatment of cells with PC1 (anti-IgPKD1) and JAK2 inhibitors abolished JAK2 activation. Consistently, mechanostimulation triggered PC1-mediated phosphorylation and nuclear translocation of STAT3. The nuclear phosphorylated(p)/DNA-binding competent pSTAT3 levels were augmented after stretching followed by elevated DNA-binding activity. Pre-treatment with a STAT3 inhibitor either alone or in combination with anti-IgPKD1 abrogated this effect. Moreover, PC1-mediated mechanostimulation induced elevation of Runx2 mRNA levels. ChIP assays revealed direct regulation of Runx2 promoter activity by STAT3/Runx2 after mechanical-stretching that was PC1-dependent. Our findings show that mechanical load upregulates expression of Runx2 gene via potentiation of PC1-JAK2/STAT3 signaling axis, culminating to possibly control osteoblastic differentiation and ultimately bone formation.


Assuntos
Diferenciação Celular , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Janus Quinase 2/metabolismo , Mecanotransdução Celular , Osteoblastos/citologia , Fator de Transcrição STAT3/metabolismo , Canais de Cátion TRPP/metabolismo , Regulação para Cima/genética , Sequência de Bases , Linhagem Celular , Núcleo Celular/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , DNA/metabolismo , Humanos , Modelos Biológicos , Osteoblastos/metabolismo , Fosforilação , Regiões Promotoras Genéticas , Ligação Proteica , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Canais de Cátion TRPP/química
7.
J Cell Biochem ; 118(2): 232-236, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27463370

RESUMO

Mechanotransduction is a key process by which cells perceive extracellular mechanical cues/intercellular physical interactions and transform them into intracellular biochemical signals. This physiological process is crucial during bone development and bone remodeling throughout childhood and adult life, whereas several aberrations during this process have emerged as a distinct pathogenic molecular entity in bone maladies and tumor formation. The present review focuses on recent advances regarding the mechanobiology of osteosarcoma, the most common type of bone cancer. Special emphasis is given on the mechano-responsive signal transduction pathways underlying osteosarcoma pathology and on specific mechanosensitive molecules engaged in osteosarcoma development. J. Cell. Biochem. 118: 232-236, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Neoplasias Ósseas/metabolismo , Mecanotransdução Celular , Osteossarcoma/metabolismo , Animais , Neoplasias Ósseas/patologia , Humanos , Osteossarcoma/patologia
8.
Cell Mol Life Sci ; 73(8): 1685-98, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26646068

RESUMO

Endothelial dysfunction involves deregulation of the key extracellular matrix (ECM) enzyme lysyl oxidase (LOX) and the vasoconstrictor protein, endothelin-1 (ET-1), whose gene expression can be modulated by the transcriptional activators nuclear factor kappa B (NF-κB) and activator protein-1 (AP-1). Advanced glycation end products (AGEs) present an aggravating factor of endothelial dysfunction which upon engagement to their receptor RAGE induce upregulation of mitogen-activated protein kinases (MAPKs), leading to NF-κB and AP-1 potentiation. We hypothesized that AGEs could induce NF-κΒ- and AP-1-dependent regulation of LOX and ET-1 expression via the AGE/RAGE/MAPK signaling axis. Western blot, real-time qRT-PCR, FACS analysis and electrophoretic mobility-shift assays were employed in human aortic endothelial cells (HAECs) following treatment with AGE-bovine serum albumin (AGE-BSA) to investigate the signaling pathway towards this hypothesis. Furthermore, immunohistochemical analysis of AGEs, RAGE, LOX and ET-1 expression was conducted in aortic endothelium of a rat experimental model exposed to high- or low-AGE content diet. HAECs exposed to AGE-BSA for various time points exhibited upregulation of LOX and ET-1 mRNA levels in a dose- and time-dependent manner. Exposure of HAECs to AGE-BSA also showed specific elevation of phospho(p)-ERK1/2 and p-JNK levels in a dose- and time-dependent fashion. AGE administration significantly increased NF-κΒ- and AP-1-binding activity to both LOX and ET-1 cognate promoter regions. Moreover, LOX and ET-1 overexpression in rat aortic endothelium upon high-AGE content diet confirmed the functional interrelation of these molecules. Our findings demonstrate that AGEs trigger NF-κΒ- and AP-1-mediated upregulation of LOX and ET-1 via the AGE/RAGE/MAPK signaling cascade in human endothelial cells, thus contributing to distorted endothelial homeostasis by impairing endothelial barrier function, altering ECM biomechanical properties and cell proliferation.


Assuntos
Aorta/metabolismo , Células Endoteliais/metabolismo , Endotelina-1/biossíntese , Produtos Finais de Glicação Avançada/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proteína-Lisina 6-Oxidase/biossíntese , Animais , Aorta/citologia , Linhagem Celular , Endotélio Vascular/metabolismo , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo/fisiologia , Ratos , Ratos Wistar , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Receptores Depuradores Classe E/metabolismo , Fator de Transcrição AP-1/metabolismo , Ativação Transcricional
9.
BMC Cancer ; 16: 174, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26931562

RESUMO

BACKGROUND: Advanced glycation end products (AGEs) and their receptor RAGE emerge as important pathogenic contributors in colorectal carcinogenesis. However, their relationship to the detoxification enzyme Glyoxalase (GLO)-I and Adiponectin receptors (AdipoR1, AdipoR2) in colorectal carcinoma (CRC) is currently understudied. In the present study, we investigated the expression levels of the above molecules in CRC compared to adjacent non-tumoral tissue and their potential correlation with clinicopathological characteristics and patients' survival. METHODS: We analyzed the immunohistochemical expression of AGE, RAGE, GLO-1, AdipoR1 and AdipoR2 in 133 primary CRC cases, focusing on GLO-I. The tumour MSI status was further assessed in mucinous carcinomas. Western immunoblotting was employed for validation of immunohistochemical data in normal and tumoral tissues as well in three CRC cell lines. An independent set of 55 patients was also used to validate the results of univariate survival analysis regarding GLO-I. RESULTS: CRC tissue showed higher intensity of both AGE and RAGE expression compared with normal colonic mucosa which was negative for GLO-I in most cases (78 %). Western immunoblotting confirmed AGE, RAGE and GLO-I overexpression in tumoral tissue. GLO-I expression was directly related to RAGE and inversely related to AGE immunolabeling. There was a trend towards higher expression of all markers (except for RAGE) in the subgroup of mucinous carcinomas which, although of borderline significance, seemed to be more prominent for AdipoR1 and AGE. Additionally, AGE, AdipoR1 and Adipo R2 expression was related to tumor grade, whereas GLO-1 and AdipoR1 to T-category. In survival analysis, AdipoR2 and GLO-I overexpression predicted shortened survival in the entire cohort and in early stage cases, an effect which for GLO-I was reproduced in the validation cohort. Moreover, GLO-I emerged as an independent prognosticator of adverse significance in the patients' cohort. CONCLUSIONS: We herein provide novel evidence regarding the possible interactions between the components of AGE-RAGE axis, GLO-I and adiponectin receptors in CRC. AGE and AdipoR1 are possibly involved in colorectal carcinogenesis, whereas AdipoR2 and GLO-I emerged as novel independent prognostic biomarkers of adverse significance for patients with early disease stage. Further studies are warranted to extend our observations and investigate their potential therapeutic significance.


Assuntos
Neoplasias Colorretais/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais , Linhagem Celular Tumoral , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Neoplasias Colorretais/mortalidade , Feminino , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Lactoilglutationa Liase/metabolismo , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Prognóstico , Receptores de Adiponectina/genética , Receptores de Adiponectina/metabolismo , Reprodutibilidade dos Testes , Estudos Retrospectivos
10.
Glycoconj J ; 33(4): 537-44, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27236787

RESUMO

Emerging evidence indicates that accumulation of advanced glycation end products (AGEs) in human tissues may contribute to cell injury, inflammation and apoptosis through induction of endoplasmic reticulum (ER) stress. Human metabolism relies on ER homeostasis for the coordinated response of all metabolic organs by controlling the synthesis and catabolism of various nutrients. In vitro studies have demonstrated AGE-induced enhancement of unfolded protein response (UPR) in different cell types including endothelial, neuronal, pancreatic cells and podocytes, suggesting this crosstalk as an underlying pathological mechanism that contributes to metabolic diseases. In this minireview, we describe in vivo studies undertaken by our group and others that demonstrate the diverse systemic effects of AGEs in ER stress induction in major metabolic tissues such as brain, kidney, liver and pancreas of normal mice. Administration of high-AGEs content diet to normal mice for the period of 4 weeks upergulates the mRNA and protein levels of ER chaperone Bip (GRP78) indicative of UPR initiation in all major metabolic organs and induces activation of the pivotal transcription factor XBP1 that regulates glucose and lipid metabolism. Furthermore, animals with genetic ablation of UPR-activated transcription factor C/EBP homologous protein CHOP allocated in high-AGEs diet, exhibited relative resistance to UPR induction (BiP levels) and XBP1 activation in major metabolic organs. Since CHOP presents a critical mediator that links accumulation and aggregation of unfolded proteins with induction of oxidative stress and ER stress-related apoptosis, it is revealed as an important molecular target for the management of metabolic diseases.


Assuntos
Apoptose/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Produtos Finais de Glicação Avançada/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Animais , Chaperona BiP do Retículo Endoplasmático , Produtos Finais de Glicação Avançada/metabolismo , Proteínas de Choque Térmico/biossíntese , Humanos , Camundongos , Regulação para Cima/efeitos dos fármacos , Proteína 1 de Ligação a X-Box/biossíntese
11.
Carcinogenesis ; 36(6): 607-15, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25863128

RESUMO

Membrane receptors constitute novel targets during current treatment of metastatic colorectal cancer (CRC) due to the fact that their aberrant expression/activity favors cancer cell properties. Protein trafficking is responsible for the correct targeting of membrane receptors to the apical and basolateral surfaces, as well as to the adherent and tight junctions of the cell. Impaired availability or distribution of these receptors along the plasma membrane is not only associated with defective cellular homeostasis and tumor progression, but also to emerging mechanisms of resistance to CRC-targeted therapy. The present review describes how protein trafficking facilitates invasion and metastasis of CRC cells and focuses on receptor tyrosine kinases (RTKs) endocytic transport, providing thoughts for surpassing RTKs-centered mechanisms of resistance.


Assuntos
Carcinogênese/patologia , Neoplasias Colorretais/patologia , Metástase Neoplásica/patologia , Transporte Proteico/fisiologia , Receptores Proteína Tirosina Quinases/metabolismo , Apoptose , Membrana Celular , Resistencia a Medicamentos Antineoplásicos , Humanos
12.
Int J Cancer ; 136(7): 1515-27, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25123959

RESUMO

The polycystins PC1 and PC2 are emerging as major players in mechanotransduction, a process that influences all steps of the invasion/metastasis cascade. We hypothesized that PC1 and PC2 facilitate cancer aggressiveness. Immunoblotting, RT-PCR, semi-quantitative and quantitative real-time PCR and FACS analyses were employed to investigate the effect of polycystin overexpression in colorectal cancer (CRC) cells. The impact of PC1 inhibition on cancer-cell proliferation was evaluated through an MTT assay. In vitro data were analyzed by Student's t-test. HT29 human xenografts were treated with anti-PC1 (extracellular domain) inhibitory antibody and analyzed via immunohistochemistry to determine the in vivo role of PC1 in CRC. Clinical significance was assessed by examining PC1 and PC2 protein expression in CRC patients (immunohistochemistry). In vivo and clinical data were analyzed by non-parametric tests, Kaplan-Meier curves, log-rank test and Cox model. All statistical tests were two-sided. PC1 overexpression promotes epithelial-to-mesenchymal transition (EMT) in HCT116 cells, while PC2 overexpression results in upregulation of the mTOR pathway in SW480 cells. PC1 inhibition causes reduced cell proliferation in CRC cells inducing tumor necrosis and suppressing EMT in HT29 tumor xenografts. In clinical study, PC1 and PC2 overexpression associates with adverse pathological parameters, including invasiveness and mucinous carcinomas. Moreover, PC1 overexpression appears as an independent prognostic factor of reduced recurrence-free survival (HR = 1.016, p = 0.03) and lowers overall survival probability, while aberrant PC2 expression predicts poor overall survival (p = 0.0468). These results support, for the first time, a direct link between mechanosensing polycystins (PC1 and PC2) and CRC progression.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Fenótipo , Canais de Cátion TRPP/genética , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/mortalidade , Modelos Animais de Doenças , Progressão da Doença , Transição Epitelial-Mesenquimal/genética , Feminino , Expressão Gênica , Xenoenxertos , Humanos , Imuno-Histoquímica , Metástase Linfática , Masculino , Camundongos , Instabilidade de Microssatélites , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Prognóstico , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Canais de Cátion TRPP/metabolismo , Carga Tumoral/genética
13.
Clin Chem Lab Med ; 53(9): 1415-24, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25470608

RESUMO

BACKGROUND: Leiomyomas growth involves cellular hypertrophy, modulation of mitotic activity and upregulation of extracellular matrix (ECM). Vascular factors and matrix metalloproteinases (MMPs) play a coordinated role during neoplasia and tissue remodeling. The present study investigates the role of angiogenic factor vascular endothelial growth factor (VEGF)-A with the activity of main gelatinases, MMP-2/MMP-9 and their tissue inhibitor TIMP-1 in patients with leiomyomas. METHODS: Peripheral blood of 46 women with uterine leiomyomas was obtained prior hysterectomy to assess VEGF-A, MMP-2, -9, TIMP-1 levels by enzyme-linked immunosorbent assay compared to 39 healthy controls. Protein expression levels of VEGF-A, MMP-2 and MMP-9 were evaluated by western immunoblotting and immunohistochemistry in leiomyomas tissue specimens after hysterectomy. Furthermore, the activity of gelatinases in leiomyoma tissue extracts and control myometrium was evaluated by semi-quantitative zymography. RESULTS: Circulating levels of VEGF-A, MMP-2 and TIMP-1 were significantly elevated in leiomyoma patients compared to controls (p<0.001, p=0.004, p=0.003, respectively). A positive correlation was found between VEGF-A and MMP-2 (p=0.021) as well as MMP-9 (p=0.001) peripheral levels in the patient's group. Furthermore, increased VEGF-A protein levels were detected in leiomyoma tissue compared to control myometrium, followed by increased localization of both VEGF-A and MMP-2 in the ECM embedding bundles of smooth muscle cells of leiomyomas. The activity of MMP-2 was significantly higher in leiomyomas than normal myometrium in all investigated tissues. CONCLUSIONS: This study demonstrates a possible coordinated role of VEGF-A and MMP-2 during uterine leiomyomas growth and angiogenesis with potential prognostic significance.


Assuntos
Regulação Neoplásica da Expressão Gênica , Leiomioma/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Neoplasias Uterinas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Feminino , Humanos , Leiomioma/sangue , Metaloproteinase 2 da Matriz/sangue , Metaloproteinase 9 da Matriz/sangue , Pessoa de Meia-Idade , Inibidor Tecidual de Metaloproteinase-1/sangue , Neoplasias Uterinas/sangue , Fator A de Crescimento do Endotélio Vascular/sangue
14.
BMC Cancer ; 14: 149, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24593195

RESUMO

BACKGROUND: Chemokine receptor signaling pathways are implicated in the pathobiology of renal cell carcinoma (RCC). However, the clinical relevance of CXCR2 receptor, mediating the effects of all angiogenic chemokines, remains unclear. SOCS (suppressor of cytokine signaling)-3 is a negative regulator of cytokine-driven responses, contributing to interferon-α resistance commonly used to treat advanced RCC with limited information regarding its expression in RCC. METHODS: In this study, CXCR2 and SOCS-3 were immunohistochemically investigated in 118 RCC cases in relation to interleukin (IL)-6 and (IL)-8, their downstream transducer phosphorylated (p-)STAT-3, and VEGF expression, being further correlated with microvascular characteristics, clinicopathological features and survival. In 30 cases relationships with hypoxia-inducible factors, i.e. HIF-1a, p53 and NF-κΒ (p65/RelA) were also examined. Validation of immunohistochemistry and further investigation of downstream transducers, p-JAK2 and p-c-Jun were evaluated by Western immunoblotting in 5 cases. RESULTS: Both CXCR2 and IL-8 were expressed by the neoplastic cells their levels being interrelated. CXCR2 strongly correlated with the levels of HIF-1a, p53 and p65/RelA in the neoplastic cells. Although SOCS-3 was simultaneously expressed with p-STAT-3, its levels tended to show an inverse relationship with p-JAK-2 and p-c-Jun in Western blots and were positively correlated with HIF-1a, p53 and p65/p65/RelA expression. Neither CXCR2 nor SOCS-3 correlated with the extent of microvascular network. IL-8 and CXCR2 expression was associated with high grade, advanced stage and the presence/number of metastases but only CXCR2 adversely affected survival in univariate analysis. Elevated SOCS-3 expression was associated with progression, the presence/number of metastasis and shortened survival in both univariate and multivariate analysis. CONCLUSIONS: Our findings implicate SOCS-3 overexpression in RCC metastasis and biologic aggressiveness advocating its therapeutic targeting. IL-8/CXCR2 signaling also contributes to the metastatic phenotype of RCC cells but appears of lesser prognostic utility. Both CXCR2 and SOCS-3 appear to be related to transcription factors induced under hypoxia.


Assuntos
Carcinoma de Células Renais/diagnóstico , Carcinoma de Células Renais/metabolismo , Neoplasias Renais/diagnóstico , Neoplasias Renais/metabolismo , Receptores de Interleucina-8B/fisiologia , Proteínas Supressoras da Sinalização de Citocina/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Células Renais/mortalidade , Feminino , Seguimentos , Humanos , Imunofenotipagem , Neoplasias Renais/mortalidade , Masculino , Pessoa de Meia-Idade , Transdução de Sinais/genética , Proteína 3 Supressora da Sinalização de Citocinas , Taxa de Sobrevida/tendências , Regulação para Cima/genética
15.
Clin Chem Lab Med ; 52(1): 151-60, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23454718

RESUMO

BACKGROUND: Advanced glycation end products (AGEs), the final products of the Maillard reaction, have been shown to impair endothelial proliferation and function, thus contributing to endothelial cell injury present in diabetes, inflammatory and cardiovascular diseases. Endoplasmic reticulum (ER) stress triggered under hyperglycemic, hypoxic and oxidative conditions has been implicated in endothelial dysfunction through activation of the unfolded protein response (UPR). The present study investigates the role of AGEs in ER stress induction in human aortic endothelial cells exposed to variable AGE treatments. METHODS: Human aortic endothelial cells (HAEC) were treated with increasing concentrations (100, 200 µg/mL) of AGE-bovine serum albumin (AGE-BSA) at different time-points (24, 48, 72 h). The induction of ER stress and the involved UPR components were investigated on mRNA and protein levels. Apoptosis was quantitatively determined by flow cytometry detecting propidium iodide expression and annexin V binding simultaneously. RESULTS: AGEs administration significantly reduced HAEC proliferation in a time- and dose-dependent manner. An immediate induction of the ER chaperones GRP78, GRP94 and the transcriptional activator, XBP-1 was observed at 24 h and 48 h. A later induction of the phospho-elF2α and proapoptotic transcription factor CHOP was observed at 48 h and 72 h, being correlated with elevated early apoptotic cell numbers at the same time-points. CONCLUSIONS: The present study demonstrates that AGEs directly induce ER stress in human aortic endothelial cells, playing an important role in endothelial cell apoptosis. Targeting AGEs signaling pathways in order to alleviate ER stress may prove of therapeutic potential to endothelial dysfunction-related disorders.


Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Produtos Finais de Glicação Avançada/farmacologia , Soroalbumina Bovina/farmacologia , Animais , Aorta/citologia , Apoptose/efeitos dos fármacos , Bovinos , Linhagem Celular , Proliferação de Células , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Chaperona BiP do Retículo Endoplasmático , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , RNA Mensageiro/metabolismo , Fatores de Transcrição de Fator Regulador X , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Proteína 1 de Ligação a X-Box
16.
Cell Mol Life Sci ; 70(1): 167-180, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23014991

RESUMO

Mechanical forces trigger biological responses in bone cells that ultimately control osteoblastogenesis and bone program. Although several mechanosensors have been postulated, the precise mechanotransduction pathway remains obscure as the initial mechanosensing event has not yet been identified. Studies in kidney cells have shown that polycystin-1 (PC1), via its extracellular N-terminal part, may function as an "antenna-like" protein providing a linkage between environmental cues and their conversion into biochemical responses that regulate various cellular processes via the calcineurin/NFAT pathway. Here we explored the involvement of PC1 in mechanical load (stretching)-induced signaling cascades that control osteoblastogenesis/bone formation. FACS and TransAM Transcription Factor ELISA analyses employing extracts from primary human osteoblast-like, PC1 expressing cells subjected to mechanical stretching (0-6 h) revealed that unphosphorylated/DNA-binding competent NFATc1 increased at 0.5-1 h and returned to normal at 6 h. In accordance with the activation mechanism of NFATc1, stretching of cultured cells pre-treated with cyclosporin A (CsA, a specific inhibitor of the calcineurin/NFAT pathway) abrogated the observed decrease in the abundance of the cytoplasmic pNFATc1 (phosphorylated/inactive) species. Furthermore, stretching of osteoblastic cells pre-treated with an antibody against the mechanosensing N-terminal part of PC1 also abrogated the observed decrease in the cytoplasmic levels of the inactive pNFATc1 species. Importantly, under similar conditions (pre-incubation of stretched cells with the inhibitory anti-PC1 antibody), the expression of the key osteoblastic, NFATc1-target gene runx2 decreased compared to untreated cells. Therefore, PC1 acts as chief mechanosensing molecule that modulates osteoblastic gene transcription and hence bone-cell differentiation through the calcineurin/NFAT signaling cascade.


Assuntos
Calcineurina/metabolismo , Mecanotransdução Celular/fisiologia , Fatores de Transcrição NFATC/metabolismo , Osteoblastos/fisiologia , Canais de Cátion TRPP/fisiologia , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Regulação da Expressão Gênica , Humanos , Osteoblastos/metabolismo , Osteogênese/fisiologia , Estimulação Física , RNA Mensageiro/metabolismo , Canais de Cátion TRPP/metabolismo
17.
Trends Pharmacol Sci ; 45(6): 472-474, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38653668

RESUMO

In a recent study in Nature Chemical Biology, Zheng et al. exploiting strain release by malolactone-based electrophiles designed a first-in-class covalent inhibitor that targets the elusive aspartate of the Kirsten rat sarcoma viral oncogene homolog (K-Ras)-G12D variant, which is highly prevalent in pancreatic cancer. The compound drastically inhibited oncogenic signaling and tumor growth in preclinical K-Ras-G12D-mutant pancreatic cancer models, expanding treatment potential beyond K-Ras-G12C-targeted therapies.


Assuntos
Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Animais , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Mutação , Transdução de Sinais/efeitos dos fármacos
18.
Trends Mol Med ; 30(7): 609-611, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38594095

RESUMO

In a recent report in Nature, Goto et al. reveal a novel immune-evasion mechanism adopted by early colorectal cancer (CRC) cells that is based on the transcription factor sex determining region Y (SRY)-box transcription factor 17 (SOX17). Leveraging colorectal adenoma and cancer models to perform comprehensive transcriptomic/chromatin analyses, this work shows that SOX17 generates immune-silent leucine-rich repeat-containing G protein-coupled receptor 5- (LGR5-) tumor cells, which suppress interferon gamma (IFNγ) signaling and promote immune escape.


Assuntos
Neoplasias Colorretais , Fatores de Transcrição SOXF , Humanos , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Fatores de Transcrição SOXF/metabolismo , Fatores de Transcrição SOXF/genética , Animais , Evasão Tumoral , Transdução de Sinais , Regulação Neoplásica da Expressão Gênica
19.
Trends Cancer ; 10(4): 277-279, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395732

RESUMO

In a recent study published in Cancer Cell, Cords et al. employed multiplexed imaging mass cytometry to analyze cancer-associated fibroblast (CAF) heterogeneity in 1070 NSCLC patients. This work defined good and poor prognostic CAF phenotypes, the latter associated with metastasis and chemoresistance, as well as revealed that CAF spatial location correlates with immune cell infiltration and clinical outcome.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Fibroblastos Associados a Câncer/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Prognóstico , Fenótipo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia
20.
Mol Med ; 18: 379-88, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22231733

RESUMO

The aim was to expand recently published information regarding the significance of the interleukin (IL)-8/p-STAT-3 (signal transducer and activator of transcription) pathway in astrocytomas, focusing on the IL-8 receptor, chemokine (C-X-C motif) receptor 2 (CXCR2), and the STAT-3 inhibitor SOCS-3 (suppressors of cytokine signaling). A total of 91 paraffin-embedded human astrocytoma tissues (grades II-IV) were investigated for the association of SOCS-3 and CXCR2 expression with clinicopathologic and morphometric microvascular characteristics, vascular endothelial growth factor (VEGF), IL-8 and p-STAT-3 expression and patient survival. Peripheral IL-8 secretion levels were assessed by enzyme-linked immunosorbent spot (ELISPOT). SOCS-3, p-STAT-3 and CXCR2 protein levels were also quantified by Western immunoblotting in six cases, and the protein levels of SOCS-3 and CXCR2 were correlated with the immunohistochemical expression of the respective proteins. All CXCR2-positive cases by Western immunoblotting displayed increased peripheral IL-8 secretion levels. Treatment of primary glioblastoma cell cultures with exogenous IL-8 enhanced proliferation, and this effect was inhibited by treatment with a neutralizing anti-CXCR2 antibody. SOCS-3 and CXCR2 were expressed by neoplastic astrocytes in 92.4% and 48.78% of cases, respectively, with their levels increasing with histological grade and extent of necrosis. VEGF expression and microvessel density, CXCR2 and IL-8 levels were interrelated. SOCS-3 and p-STAT-3 were co-expressed in 85.7% of cases, although they were not interrelated. In univariate survival analysis, increased SOCS-3 expression and the presence of CXCR2 adversely affected survival, whereas in multivariate analysis, only CXCR2 remained significant. The prognostic significance of CXCR2 was validated in an independent set of 63 patients. Our data implicate IL-8/CXCR2 signaling pathway in the progression and regulation of angiogenesis in astrocytomas and provide a rationale for CXCR2 therapeutic exploitation in these tumors.


Assuntos
Astrocitoma/metabolismo , Neoplasias Encefálicas/metabolismo , Interleucina-8/metabolismo , Receptores de Interleucina-8B/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/metabolismo , Criança , Feminino , Humanos , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Fator de Transcrição STAT3/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas , Fator A de Crescimento do Endotélio Vascular/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA