Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Magn Reson Med ; 91(1): 19-27, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37772616

RESUMO

PURPOSE: To develop prospective motion correction for single-voxel MRS in the human cervical spinal cord. METHODS: A motion MR navigator was implemented using reduced field-of-view 2D-selective RF excitation together with EPI readout. A short-echo semi-LASER sequence (TE = 30 ms) was updated to incorporate this real-time image-based motion navigator, as well as real-time shim and frequency navigators. Five healthy participants were studied at 3 T with a 64-channel head-neck receive coil. Single-voxel MRS data were measured in a voxel located at the C3-5 vertebrae level. The motion navigator was used to correct for translations in the X-Y plane and was validated by assessing spectral quality with and without prospective correction in the presence of subject motion. RESULTS: Without prospective correction, motion resulted in severe lipid contamination in the MR spectra. With prospective correction, the quality of spinal cord MR spectra in the presence of motion was similar to that obtained in the absence of motion, with comparable spectral signal-to-noise ratio and linewidth and no significant lipid contamination. CONCLUSION: Prospective motion and B0 correction allow acquisition of good-quality MR spectra in the human cervical spinal cord in the presence of motion. This new technique should facilitate reliable acquisition of spinal cord MR spectra in both research and clinical settings.


Assuntos
Medula Cervical , Humanos , Medula Cervical/diagnóstico por imagem , Estudos Prospectivos , Movimento (Física) , Medula Espinal , Lipídeos , Artefatos , Encéfalo , Imageamento por Ressonância Magnética
2.
Magn Reson Med ; 92(4): 1338-1347, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38704666

RESUMO

PURPOSE: Localized shimming in single-voxel MRS often results in large B0 inhomogeneity outside the volume-of-interest. This causes unacceptable degradation in motion navigator images. Switching back and forth between whole-brain shim and localized shim is possible for linear shims, but not for higher-order shims. Here we propose motion navigators largely insensitive to B0 inhomogeneity for prospective motion-corrected MRS with localized higher-order shimming. METHODS: A recent fast high-resolution motion navigator based on spiral-in/out k-space trajectories and multislice-to-volume registration was modified by splitting the readout into multiple shot interleaves which shortened the echo time and reduced the effect of B0 inhomogeneity. The performance of motion correction was assessed in healthy subjects in the prefrontal cortex using a sLASER sequence at 3T (N = 5) and 7T (N = 5). RESULTS: With multiple spatial interleaves, excellent quality navigator images were acquired in the whole brain in spite of large B0 inhomogeneity outside the MRS voxel. The total duration of the navigator in sLASER remained relatively short even with multiple shots (3T: 10 spatial interleaves 94 ms per slice; 7T: 15 spatial interleaves 103 ms per slice). Prospective motion correction using the multi-shot navigators yielded comparable spectral quality (water linewidth and metabolite SNR) with and without subject motion. CONCLUSION: B0-insensitive motion navigators enable prospective motion correction for MRS with all first- and second-order shims adjusted in the MRS voxel, providing optimal spectral linewidth.


Assuntos
Algoritmos , Movimento (Física) , Humanos , Espectroscopia de Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Artefatos , Masculino , Adulto , Feminino , Reprodutibilidade dos Testes , Córtex Pré-Frontal/diagnóstico por imagem , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA