Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(20): 4310-4324.e23, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37703874

RESUMO

Cellular homeostasis requires the robust control of biomolecule concentrations, but how do millions of mRNAs coordinate their stoichiometries in the face of dynamic translational changes? Here, we identified a two-tiered mechanism controlling mRNA:mRNA and mRNA:protein stoichiometries where mRNAs super-assemble into condensates with buffering capacity and sorting selectivity through phase-transition mechanisms. Using C. elegans oogenesis arrest as a model, we investigated the transcriptome cytosolic reorganization through the sequencing of RNA super-assemblies coupled with single mRNA imaging. Tightly repressed mRNAs self-assembled into same-sequence nanoclusters that further co-assembled into multiphase condensates. mRNA self-sorting was concentration dependent, providing a self-buffering mechanism that is selective to sequence identity and controls mRNA:mRNA stoichiometries. The cooperative sharing of limiting translation repressors between clustered mRNAs prevented the disruption of mRNA:repressor stoichiometries in the cytosol. Robust control of mRNA:mRNA and mRNA:protein stoichiometries emerges from mRNA self-demixing and cooperative super-assembly into multiphase multiscale condensates with dynamic storage capacity.


Assuntos
Condensados Biomoleculares , Caenorhabditis elegans , RNA Mensageiro , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Oogênese , Biossíntese de Proteínas , Transporte de RNA , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Proteínas/química , Proteínas/metabolismo , Condensados Biomoleculares/química , Condensados Biomoleculares/metabolismo
2.
Nucleic Acids Res ; 48(11): 5859-5872, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32421779

RESUMO

Subcellular organization of RNAs and proteins is critical for cell function, but we still lack global maps and conceptual frameworks for how these molecules are localized in cells and tissues. Here, we introduce ATLAS-Seq, which generates transcriptomes and proteomes from detergent-free tissue lysates fractionated across a sucrose gradient. Proteomic analysis of fractions confirmed separation of subcellular compartments. Unexpectedly, RNAs tended to co-sediment with other RNAs in similar protein complexes, cellular compartments, or with similar biological functions. With the exception of those encoding secreted proteins, most RNAs sedimented differently than their encoded protein counterparts. To identify RNA binding proteins potentially driving these patterns, we correlated their sedimentation profiles to all RNAs, confirming known interactions and predicting new associations. Hundreds of alternative RNA isoforms exhibited distinct sedimentation patterns across the gradient, despite sharing most of their coding sequence. These observations suggest that transcriptomes can be organized into networks of co-segregating mRNAs encoding functionally related proteins and provide insights into the establishment and maintenance of subcellular organization.


Assuntos
Fracionamento Celular , Microambiente Celular , Espaço Intracelular/química , RNA/análise , RNA/metabolismo , Análise de Sequência de RNA , Transcriptoma , Animais , Extratos Celulares/química , Centrifugação com Gradiente de Concentração , Feminino , Fígado/citologia , Fígado/metabolismo , Espectrometria de Massas , Camundongos , RNA/química , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Ribossomos/química , Sacarose
3.
Emerg Top Life Sci ; 4(3): 265-280, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-32542380

RESUMO

Gene expression must be co-ordinated to cellular activity. From transcription to decay, the expression of millions of RNA molecules is highly synchronized. RNAs are covered by proteins that regulate every aspect of their cellular life: expression, storage, translational status, localization, and decay. Many RNAs and their associated regulatory proteins can coassemble to condense into liquid droplets, viscoelastic hydrogels, freeze into disorganized glass-like aggregates, or harden into quasi-crystalline solids. Phase separations provide a framework for transcriptome organization where the single functional unit is no longer a transcript but instead an RNA regulon. Here, we will analyze the interaction networks that underlie RNA super-assemblies, assess the complex multiscale, multiphase architecture of the transcriptome, and explore how the biophysical state of an RNA molecule can define its fate. Phase separations are emerging as critical routes for the epitranscriptomic control of gene expression.


Assuntos
RNA , Ribonucleoproteínas , Transcriptoma , RNA/metabolismo , Processamento Pós-Transcricional do RNA , Regulon , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA