Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Pediatr Res ; 95(6): 1564-1571, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38228744

RESUMO

BACKGROUND: In very low birth weight (VLBW) infants, human milk cream added to standard human milk fortification is used to improve growth. This study aimed to evaluate the impact of cream supplement on the intestinal microbiome of VLBW infants. METHODS: Whole genome shotgun sequencing was performed on stool (n = 57) collected from a cohort of 23 infants weighing 500-1250 grams (control = 12, cream = 11). Both groups received an exclusive human milk diet (mother's own milk, donor human milk, and donor human milk-derived fortifier) with the cream group receiving an additional 2 kcal/oz cream at 100 mL/kg/day of fortified feeds and then 4 kcal/oz if poor growth. RESULTS: While there were no significant differences in alpha diversity, infants receiving cream significantly differed from infants in the control group in beta diversity. Cream group samples had significantly higher prevalence of Proteobacteria and significantly lower Firmicutes compared to control group. Klebsiella species dominated the microbiota of cream-exposed infants, along with bacterial pathways involved in lipid metabolism and metabolism of cofactors and amino acids. CONCLUSIONS: Cream supplementation significantly altered composition of the intestinal microbiome of VLBW infants to favor increased prevalence of Proteobacteria and functional gene content associated with these bacteria. IMPACT: We report changes to the intestinal microbiome associated with administration of human milk cream; a novel supplement used to improve growth rates of preterm very low birth weight infants. Since little is known about the impact of cream on intestinal microbiota composition of very low birth weight infants, our study provides valuable insight on the effects of diet on the microbiome of this population. Dietary supplements administered to preterm infants in neonatal intensive care units have the potential to influence the intestinal microbiome composition which may affect overall health status of the infant.


Assuntos
Microbioma Gastrointestinal , Recém-Nascido Prematuro , Recém-Nascido de muito Baixo Peso , Leite Humano , Humanos , Microbioma Gastrointestinal/efeitos dos fármacos , Recém-Nascido , Estudos Prospectivos , Feminino , Masculino , Alimentos Fortificados , Fezes/microbiologia , Proteobactérias , Suplementos Nutricionais , Fenômenos Fisiológicos da Nutrição do Lactente
2.
bioRxiv ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39005370

RESUMO

Introduction: Ascaris lumbricoides and Ascaris suum are parasitic nematodes that primarily infest the small intestines of humans and pigs, respectively. Ascariasis poses a significant threat to human health and swine health. Understanding Ascaris larval development is crucial for developing novel therapeutic interventions that will prevent ascariasis in both humans and pigs. This study aimed to characterize the excretory-secretory (ES) proteome of different Ascaris suum larval stages (L3-egg, L3-lung, L3-trachea) to identify potential targets for intervention to prevent Ascaris -induced global morbidity. Methods: Stage-specific larvae were isolated, cultured in vitro and ES-product was collected. Third-stage Ascaris larvae (L3) were isolated from embryonated eggs (L3-egg), isolated from the lungs of Balb/c mice infected with Ascaris suum eggs at day 8 post infection (L3-lungs) and isolated from the trachea of Balb/c mice infected with Ascaris suum eggs at day 12 post infection (L3-trachea). ES products were obtained by culturing larvae. Proteomic analysis was conducted using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and bioinformatic tools including MaxQuant, Perseus, and Andromeda, following a detailed protocol available on GitHub. The analysis encompassed peptide identification, scoring, and quantification against an organism-specific database, with subsequent quality control, correlation assessment, and differential abundance determination using the Amica algorithm. Results: A total of 58 unique proteins were identified in the ES products. Fourteen proteins were common across all stages, while others were stage-specific. Principal component analysis revealed distinct protein profiles for each stage, suggesting qualitatively different proteomes. Gene ontology analysis indicated stage-specific GO enrichment of specific protein classes, such as nuclear proteins in L3-egg ES products and metabolic enzymes in L3-lung and L3-trachea ES products. Discussion: This study revealed stage-specific differences in the composition of Ascaris ES products. Further investigation into the functional roles of these proteins and their interactions with host cells is crucial for developing novel therapeutic and diagnostic strategies against ascariasis.

3.
PLoS Negl Trop Dis ; 18(2): e0011930, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38324590

RESUMO

Ascariasis (roundworm) is the most common parasitic helminth infection globally and can lead to significant morbidity in children including chronic lung disease. Children become infected with Ascaris spp. via oral ingestion of eggs. It has long been assumed that Ascaris egg hatching and larval translocation across the gastrointestinal mucosa to initiate infection occurs in the small intestine. Here, we show that A. suum larvae hatched in the host stomach in a murine model. Larvae utilize acidic mammalian chitinase (AMCase; acid chitinase; Chia) from chief cells and acid pumped by parietal cells to emerge from eggs on the surface of gastric epithelium. Furthermore, antagonizing AMCase and gastric acid in the stomach decreases parasitic burden in the liver and lungs and attenuates lung disease. Given Ascaris eggs are chitin-coated, the gastric corpus would logically be the most likely organ for egg hatching, though this is the first study directly evincing the essential role of the host gastric corpus microenvironment. These findings point towards potential novel mechanisms for therapeutic targets to prevent ascariasis and identify a new biomedical significance of AMCase in mammals.


Assuntos
Ascaríase , Ascaris suum , Quitinases , Pneumopatias , Doenças dos Suínos , Criança , Humanos , Animais , Camundongos , Suínos , Ascaríase/parasitologia , Larva , Modelos Animais de Doenças , Ascaris , Pulmão/parasitologia , Estômago , Doenças dos Suínos/parasitologia , Mamíferos
4.
bioRxiv ; 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-37292968

RESUMO

Background & Aims: Human intestinal enteroids (HIEs) are gaining recognition as physiologically relevant models of the intestinal epithelium. While HIEs from adults are used extensively in biomedical research, few studies have used HIEs from infants. Considering the dramatic developmental changes that occur during infancy, it is important to establish models that represent infant intestinal characteristics and physiological responses. Methods: We established jejunal HIEs from infant surgical samples and performed comparisons to jejunal HIEs from adults using RNA sequencing (RNA-Seq) and morphologic analyses. We validated differences in key pathways through functional studies and determined if these cultures recapitulate known features of the infant intestinal epithelium. Results: RNA-Seq analysis showed significant differences in the transcriptome of infant and adult HIEs, including differences in genes and pathways associated with cell differentiation and proliferation, tissue development, lipid metabolism, innate immunity, and biological adhesion. Validating these results, we observed a higher abundance of cells expressing specific enterocyte, goblet cell and enteroendocrine cell markers in differentiated infant HIE monolayers, and greater numbers of proliferative cells in undifferentiated 3D cultures. Compared to adult HIEs, infant HIEs portray characteristics of an immature gastrointestinal epithelium including significantly shorter cell height, lower epithelial barrier integrity, and lower innate immune responses to infection with an oral poliovirus vaccine. Conclusions: HIEs established from infant intestinal tissues reflect characteristics of the infant gut and are distinct from adult cultures. Our data support the use of infant HIEs as an ex-vivo model to advance studies of infant-specific diseases and drug discovery for this population.

5.
mBio ; 15(8): e0131624, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-38953637

RESUMO

Human intestinal enteroids (HIEs) are gaining recognition as physiologically relevant models of the intestinal epithelium. While HIEs from adults are used extensively in biomedical research, few studies have used HIEs from infants. Considering the dramatic developmental changes that occur during infancy, it is important to establish models that represent infant intestinal characteristics and physiological responses. We established jejunal HIEs from infant surgical samples and performed comparisons to jejunal HIEs from adults using RNA sequencing (RNA-Seq) and morphologic analyses. We then validated differences in key pathways through functional studies and determined whether these cultures recapitulate known features of the infant intestinal epithelium. RNA-Seq analysis showed significant differences in the transcriptome of infant and adult HIEs, including differences in genes and pathways associated with cell differentiation and proliferation, tissue development, lipid metabolism, innate immunity, and biological adhesion. Validating these results, we observed a higher abundance of cells expressing specific enterocyte, goblet cell, and enteroendocrine cell markers in differentiated infant HIE monolayers, and greater numbers of proliferative cells in undifferentiated 3D cultures. Compared to adult HIEs, infant HIEs portray characteristics of an immature gastrointestinal epithelium including significantly shorter cell height, lower epithelial barrier integrity, and lower innate immune responses to infection with an oral poliovirus vaccine. HIEs established from infant intestinal tissues reflect characteristics of the infant gut and are distinct from adult cultures. Our data support the use of infant HIEs as an ex vivo model to advance studies of infant-specific diseases and drug discovery for this population. IMPORTANCE: Tissue or biopsy stem cell-derived human intestinal enteroids are increasingly recognized as physiologically relevant models of the human gastrointestinal epithelium. While enteroids from adults and fetal tissues have been extensively used for studying many infectious and non-infectious diseases, there are few reports on enteroids from infants. We show that infant enteroids exhibit both transcriptomic and morphological differences compared to adult cultures. They also differ in functional responses to barrier disruption and innate immune responses to infection, suggesting that infant and adult enteroids are distinct model systems. Considering the dramatic changes in body composition and physiology that begin during infancy, tools that appropriately reflect intestinal development and diseases are critical. Infant enteroids exhibit key features of the infant gastrointestinal epithelium. This study is significant in establishing infant enteroids as age-appropriate models for infant intestinal physiology, infant-specific diseases, and responses to pathogens.


Assuntos
Mucosa Intestinal , Humanos , Lactente , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Adulto , Diferenciação Celular , Jejuno/citologia , Jejuno/imunologia , Transcriptoma , Organoides , Imunidade Inata , Feminino , Masculino , Recém-Nascido , Enterócitos
6.
Curr Opin Microbiol ; 75: 102362, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37536261

RESUMO

Laboratory studies of host-microbe interactions have historically been carried out using transformed cell lines and animal models. Although much has been learned from these models, recent advances in the development of multicellular, physiologically active, human intestinal organoid (HIO) cultures are allowing unprecedented discoveries of host-microbe interactions. Here, we review recent literature using HIOs as models to investigate the pathogenesis of clinically important enteric bacteria and viruses and study commensal intestinal microbes. We also discuss limitations of current HIO culture systems and how technical advances and innovative engineering approaches are providing new directions to improve the model. The studies discussed here highlight the potential of HIOs for studying microbial pathogenesis, host-microbe interactions, and for preclinical development of therapeutics and vaccines.


Assuntos
Microbioma Gastrointestinal , Vírus , Animais , Humanos , Intestinos , Organoides , Mucosa Intestinal/metabolismo
7.
Sci Rep ; 12(1): 21300, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494396

RESUMO

Ixodes scapularis long-term blood feeding behavior is facilitated by a tick secreted bio adhesive (tick cement) that attaches tick mouthparts to skin tissue and prevents the host from dislodging the attached tick. Understanding tick cement formation is highly sought after as its disruption will prevent tick feeding. This study describes proteins that form the inner core layer of I. scapularis tick cement as disrupting these proteins will likely stop formation of the outer cortical layer. The inner core cement layer completes formation by 24 h of tick attachment. Thus, we used laser-capture microdissection to isolate cement from cryosections of 6 h and 24 h tick attachment sites and to distinguish between early and late inner core cement proteins. LC-MS/MS analysis identified 138 tick cement proteins (TCPs) of which 37 and 35 were unique in cement of 6 and 24 h attached ticks respectively. We grouped TCPs in 14 functional categories: cuticular protein (16%), tick specific proteins of unknown function, cytoskeletal proteins, and enzymes (13% each), enzymes (10%), antioxidant, glycine rich, scaffolding, heat shock, histone, histamine binding, proteases and protease inhibitors, and miscellaneous (3-6% each). Gene ontology analysis confirm that TCPs are enriched for bio adhesive properties. Our data offer insights into tick cement bonding patterns and set the foundation for understanding the molecular basis of I. scapularis tick cement formation.


Assuntos
Ixodes , Animais , Ixodes/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Proteínas de Artrópodes/genética
8.
PLoS Negl Trop Dis ; 15(12): e0010050, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34914687

RESUMO

Ascariasis is one of the most common infections in the world and associated with significant global morbidity. Ascaris larval migration through the host's lungs is essential for larval development but leads to an exaggerated type-2 host immune response manifesting clinically as acute allergic airway disease. However, whether Ascaris larval migration can subsequently lead to chronic lung diseases remains unknown. Here, we demonstrate that a single episode of Ascaris larval migration through the host lungs induces a chronic pulmonary syndrome of type-2 inflammatory pathology and emphysema accompanied by pulmonary hemorrhage and chronic anemia in a mouse model. Our results reveal that a single episode of Ascaris larval migration through the host lungs leads to permanent lung damage with systemic effects. Remote episodes of ascariasis may drive non-communicable lung diseases such as asthma, chronic obstructive pulmonary disease (COPD), and chronic anemia in parasite endemic regions.


Assuntos
Anemia/parasitologia , Ascaríase/parasitologia , Ascaris suum/fisiologia , Pneumopatias/parasitologia , Anemia/genética , Anemia/imunologia , Anemia/patologia , Animais , Ascaríase/genética , Ascaríase/imunologia , Ascaríase/patologia , Ascaris suum/genética , Doença Crônica , Citocinas/genética , Citocinas/imunologia , Feminino , Humanos , Larva/genética , Larva/fisiologia , Pulmão/imunologia , Pulmão/parasitologia , Pulmão/patologia , Pneumopatias/genética , Pneumopatias/imunologia , Pneumopatias/patologia , Camundongos , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA