Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Clin Invest ; 134(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38299593

RESUMO

The immune system is built to counteract unpredictable threats, yet it relies on predictable cycles of activity to function properly. Daily rhythms in immune function are an expanding area of study, and many originate from a genetically based timekeeping mechanism known as the circadian clock. The challenge is how to harness these biological rhythms to improve medical interventions. Here, we review recent literature documenting how circadian clocks organize fundamental innate and adaptive immune activities, the immunologic consequences of circadian rhythm and sleep disruption, and persisting knowledge gaps in the field. We then consider the evidence linking circadian rhythms to vaccination, an important clinical realization of immune function. Finally, we discuss practical steps to translate circadian immunity to the patient's bedside.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Humanos , Sono , Sistema Imunitário
2.
Cell Rep ; 43(5): 114190, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38717903

RESUMO

Neuronal morphology influences synaptic connectivity and neuronal signal processing. However, it remains unclear how neuronal shape affects steady-state distributions of organelles like mitochondria. In this work, we investigated the link between mitochondrial transport and dendrite branching patterns by combining mathematical modeling with in vivo measurements of dendrite architecture, mitochondrial motility, and mitochondrial localization patterns in Drosophila HS (horizontal system) neurons. In our model, different forms of morphological and transport scaling rules-which set the relative thicknesses of parent and daughter branches at each junction in the dendritic arbor and link mitochondrial motility to branch thickness-predict dramatically different global mitochondrial localization patterns. We show that HS dendrites obey the specific subset of scaling rules that, in our model, lead to realistic mitochondrial distributions. Moreover, we demonstrate that neuronal activity does not affect mitochondrial transport or localization, indicating that steady-state mitochondrial distributions are hard-wired by the architecture of the neuron.


Assuntos
Dendritos , Mitocôndrias , Animais , Dendritos/metabolismo , Mitocôndrias/metabolismo , Drosophila melanogaster/metabolismo , Drosophila/metabolismo , Neurônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA