Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Commun Med (Lond) ; 2: 29, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35603292

RESUMO

Background: Detecting cancer at early stages significantly increases patient survival rates. Because lethal solid tumors often produce few symptoms before progressing to advanced, metastatic disease, diagnosis frequently occurs when surgical resection is no longer curative. One promising approach to detect early-stage, curable cancers uses biomarkers present in circulating extracellular vesicles (EVs). To explore the feasibility of this approach, we developed an EV-based blood biomarker classifier from EV protein profiles to detect stages I and II pancreatic, ovarian, and bladder cancer. Methods: Utilizing an alternating current electrokinetics (ACE) platform to purify EVs from plasma, we use multi-marker EV-protein measurements to develop a machine learning algorithm that can discriminate cancer cases from controls. The ACE isolation method requires small sample volumes, and the streamlined process permits integration into high-throughput workflows. Results: In this case-control pilot study, comparison of 139 pathologically confirmed stage I and II cancer cases representing pancreatic, ovarian, or bladder patients against 184 control subjects yields an area under the curve (AUC) of 0.95 (95% CI: 0.92 to 0.97), with sensitivity of 71.2% (95% CI: 63.2 to 78.1) at 99.5% (97.0 to 99.9) specificity. Sensitivity is similar at both early stages [stage I: 70.5% (60.2 to 79.0) and stage II: 72.5% (59.1 to 82.9)]. Detection of stage I cancer reaches 95.5% in pancreatic, 74.4% in ovarian (73.1% in Stage IA) and 43.8% in bladder cancer. Conclusions: This work demonstrates that an EV-based, multi-cancer test has potential clinical value for early cancer detection and warrants future expanded studies involving prospective cohorts with multi-year follow-up.

2.
Hematol Oncol Clin North Am ; 26(3): 447-81, vii, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22520975

RESUMO

Antibody-based therapeutics against cancer are highly successful and currently enjoy unprecedented recognition of their potential; 13 monoclonal antibodies (mAbs) have been approved for clinical use in the European Union and in the United States. Bevacizumab, rituximab, and trastuzumab had sales in 2010 of more than $5 billion each. Hundreds of mAbs, including bispecific mAbs and multispecific fusion proteins, mAbs conjugated with small-molecule drugs, and mAbs with optimized pharmacokinetics, are in clinical trials. However, deeper understanding of mechanisms is needed to overcome major problems including resistance to therapy, access to targets, complexity of biological systems, and individual variations.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Anticorpos Antineoplásicos/imunologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Anticorpos Biespecíficos/imunologia , Anticorpos Biespecíficos/uso terapêutico , Anticorpos Monoclonais/imunologia , Antineoplásicos/imunologia , Humanos , Neoplasias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA