RESUMO
Forecasting the burden of COVID-19 has been impeded by limitations in data, with case reporting biased by testing practices, death counts lagging far behind infections, and hospital census reflecting time-varying patient access, admission criteria, and demographics. Here, we show that hospital admissions coupled with mobility data can reliably predict severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission rates and healthcare demand. Using a forecasting model that has guided mitigation policies in Austin, TX, we estimate that the local reproduction number had an initial 7-d average of 5.8 (95% credible interval [CrI]: 3.6 to 7.9) and reached a low of 0.65 (95% CrI: 0.52 to 0.77) after the summer 2020 surge. Estimated case detection rates ranged from 17.2% (95% CrI: 11.8 to 22.1%) at the outset to a high of 70% (95% CrI: 64 to 80%) in January 2021, and infection prevalence remained above 0.1% between April 2020 and March 1, 2021, peaking at 0.8% (0.7-0.9%) in early January 2021. As precautionary behaviors increased safety in public spaces, the relationship between mobility and transmission weakened. We estimate that mobility-associated transmission was 62% (95% CrI: 52 to 68%) lower in February 2021 compared to March 2020. In a retrospective comparison, the 95% CrIs of our 1, 2, and 3 wk ahead forecasts contained 93.6%, 89.9%, and 87.7% of reported data, respectively. Developed by a task force including scientists, public health officials, policy makers, and hospital executives, this model can reliably project COVID-19 healthcare needs in US cities.
Assuntos
COVID-19/epidemiologia , Hospitais , Pandemias , SARS-CoV-2 , Atenção à Saúde , Previsões , Hospitalização/estatística & dados numéricos , Humanos , Saúde Pública , Estudos Retrospectivos , Estados UnidosRESUMO
OBJECTIVE. The purpose of this study was to assess the utility of PET with (2S)-2-[[(1S)-1-carboxy-5-[(6-(18F)fluoranylpyridine-3-carbonyl)amino]pentyl]carbamoylamino]pentanedioic acid (18F-DCFPyL), a prostate-specific membrane antigen (PSMA)-targeted radiotracer, in the detection of high-risk localized prostate cancer as compared with multiparametric MRI (mpMRI). SUBJECTS AND METHODS. This HIPAA-compliant prospective study included 26 consecutive patients with localized high-risk prostate cancer (median age, 69.5 years [range, 53-81 years]; median prostate-specific antigen [PSA] level, 18.88 ng/mL [range, 1.03-20.00 ng/mL]) imaged with 18F-DCFPyL PET/CT and mpMRI. Images from PET/CT and mpMRI were evaluated separately, and suspicious areas underwent targeted biopsy. Lesion-based sensitivity and tumor detection rate were compared for PSMA PET and mpMRI. Standardized uptake value (SUV) and PSMA PET parameters were correlated with histopathology score, and uptake in tumor was compared with that in nonmalignant tissue. On a patient level, SUV and PSMA tumor volume were correlated with PSA density. RESULTS. Forty-four tumors (one in Gleason grade [GG] group 1, 12 in GG group 2, seven in GG group 3, nine in GG group 4, and 15 in GG group 5) were identified at histopathology. Sensitivity and tumor detection rate of 18F-DCFPyL PET/CT and mpMRI were similar (PET/CT, 90.9% and 80%; mpMRI, 86.4% and 88.4%; p = 0.58/0.17). Total lesion PSMA and PSMA tumor volume showed a relationship with GG (τ = 0.27 and p = 0.08, τ = 0.30 and p = 0.06, respectively). Maximum SUV in tumor was significantly higher than that in nonmalignant tissue (p < 0.05). Tumor burden density moderately correlated with PSA density (r = 0.47, p = 0.01). Five true-positive tumors identified on 18F-DCFPyL PET/CT were not identified on mpMRI. CONCLUSION. In patients with high-risk prostate cancer, 18F-DCFPyL PET/CT is highly sensitive in detecting intraprostatic tumors and can detect tumors missed on mpMRI. Measured uptake is significantly higher in tumor tissue, and PSMA-derived tumor burden is associated with severity of disease.
Assuntos
Imageamento por Ressonância Magnética Multiparamétrica/métodos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Neoplasias da Próstata/diagnóstico por imagem , Idoso , Idoso de 80 Anos ou mais , Humanos , Lisina/análogos & derivados , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Estudos Prospectivos , Neoplasias da Próstata/patologia , Compostos Radiofarmacêuticos , Sensibilidade e Especificidade , Carga Tumoral , Ureia/análogos & derivadosRESUMO
PURPOSE: The purpose of our study was to assess 18F-DCFBC PET/CT, a PSMA targeted PET agent, for lesion detection and clinical management of biochemical relapse in prostate cancer patients after primary treatment. METHODS: This is a prospective IRB-approved study of 68 patients with documented biochemical recurrence after primary local therapy consisting of radical prostatectomy (n = 50), post radiation therapy (n = 9) or both (n = 9), with negative conventional imaging. All 68 patients underwent whole-body 18F-DCFBC PET/CT, and 62 also underwent mpMRI within one month. Lesion detection with 18F-DCFBC was correlated with mpMRI findings and pre-scan PSA levels. The impact of 18F-DCFBC PET/CT on clinical management and treatment decisions was established after 6 months' patient clinical follow-up. RESULTS: Forty-one patients (60.3%) showed at least one positive 18F-DCFBC lesion, for a total of 79 lesions, 30 in the prostate bed, 39 in lymph nodes, and ten in distant sites. Tumor recurrence was confirmed by either biopsy (13/41 pts), serial CT/MRI (8/41) or clinical follow-up (15/41); there was no confirmation in five patients, who continue to be observed. The 18F-DCFBC and mpMRI findings were concordant in 39 lesions (49.4%), and discordant in 40 lesions (50.6%); the majority (n = 32/40) of the latter occurring because the recurrence was located outside the mpMRI field of view. 18F-DCFBC PET positivity rates correlated with PSA values and 15%, 46%, 83%, and 77% were seen in patients with PSA values <0.5, 0.5 to <1.0, 1.0 to <2.0, and ≥2.0 ng/mL, respectively. The optimal cut-off PSA value to predict a positive 18F-DCFBC scan was 0.78 ng/mL (AUC = 0.764). A change in clinical management occurred in 51.2% (21/41) of patients with a positive 18F-DCFBC result, generally characterized by starting a new treatment in 19 patients or changing the treatment plan in two patients. CONCLUSIONS: 18F-DCFBC detects recurrences in 60.3% of a population of patients with biochemical recurrence, but results are dependent on PSA levels. Above a threshold PSA value of 0.78 ng/mL, 18F-DCFBC was able to identify recurrence with high reliability. Positive 18F-DCFBC PET imaging led clinicians to change treatment strategy in 51.2% of patients.
Assuntos
Antígenos de Superfície/sangue , Cisteína/análogos & derivados , Glutamato Carboxipeptidase II/sangue , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/normas , Neoplasias da Próstata/diagnóstico por imagem , Compostos Radiofarmacêuticos , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Neoplasias da Próstata/sangue , Sensibilidade e EspecificidadeRESUMO
PURPOSE: To characterize uptake of 1-amino-3-fluorine 18-fluorocyclobutane-1-carboxylic acid ((18)F FACBC) in patients with localized prostate cancer, benign prostatic hyperplasia (BPH), and normal prostate tissue and to evaluate its potential utility in delineation of intraprostatic cancers in histopathologically confirmed localized prostate cancer in comparison with magnetic resonance (MR) imaging. MATERIALS AND METHODS: Institutional review board approval and written informed consent were obtained for this HIPAA-compliant prospective study. Twenty-one men underwent dynamic and static abdominopelvic (18)F FACBC combined positron emission tomography (PET) and computed tomography (CT) and multiparametric (MP) 3-T endorectal MR imaging before robotic-assisted prostatectomy. PET/CT and MR images were coregistered by using pelvic bones as fiducial markers; this was followed by manual adjustments. Whole-mount histopathologic specimens were sliced with an MR-based patient-specific mold. (18)F FACBC PET standardized uptake values (SUVs) were compared with those at MR imaging and histopathologic analysis for lesion- and sector-based (20 sectors per patient) analysis. Positive and negative predictive values for each modality were estimated by using generalized estimating equations with logit link function and working independence correlation structure. RESULTS: (18)F FACBC tumor uptake was rapid but reversible. It peaked 3.6 minutes after injection and reached a relative plateau at 15-20 minutes (SUVmax[15-20min]). Mean prostate tumor SUVmax(15-20min) was significantly higher than that of the normal prostate (4.5 ± 0.5 vs 2.7 ± 0.5) (P < .001); however, it was not significantly different from that of BPH (4.3 ± 0.6) (P = .27). Sector-based comparison with histopathologic analysis, including all tumors, revealed sensitivity and specificity of 67% and 66%, respectively, for (18)F FACBC PET/CT and 73% and 79%, respectively, for T2-weighted MR imaging. (18)F FACBC PET/CT and MP MR imaging were used to localize dominant tumors (sensitivity of 90% for both). Combined (18)F FACBC and MR imaging yielded positive predictive value of 82% for tumor localization, which was higher than that with either modality alone (P < .001). CONCLUSION: (18)F FACBC PET/CT shows higher uptake in intraprostatic tumor foci than in normal prostate tissue; however, (18)F FACBC uptake in tumors is similar to that in BPH nodules. Thus, it is not specific for prostate cancer. Nevertheless, combined (18)F FACBC PET/CT and T2-weighted MR imaging enable more accurate localization of prostate cancer lesions than either modality alone.
Assuntos
Ácidos Carboxílicos , Ciclobutanos , Imageamento por Ressonância Magnética , Imagem Multimodal , Tomografia por Emissão de Pósitrons , Neoplasias da Próstata/diagnóstico por imagem , Compostos Radiofarmacêuticos , Tomografia Computadorizada por Raios X , Adulto , Idoso , Humanos , Interpretação de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Prospectivos , Hiperplasia Prostática/diagnóstico por imagem , Hiperplasia Prostática/patologia , Neoplasias da Próstata/patologiaRESUMO
PURPOSE: [(18)F]Fluciclatide is an integrin-targeted PET radiopharmaceutical. αvß3 and αvß5 are upregulated in tumor angiogenesis as well as on some tumor cell surfaces. Our aim was to use [(18)F]fluciclatide (formerly known as [(18)F]AH111585) for PET imaging of angiogenesis in melanoma and renal tumors and compare with tumor integrin expression. METHODS: Eighteen evaluable patients with solid tumors ≥2.0 cm underwent [(18)F]fluciclatide PET/CT. All patients underwent surgery and tumor tissue samples were obtained. Immunohistochemical (IHC) staining with mouse monoclonal antibodies and diaminobenzidine (DAB) was applied to snap-frozen tumor specimens, and additional IHC was done on formalin-fixed paraffin-embedded samples. DAB optical density (OD) data from digitized whole-tissue sections were compared with PET SUV80% max, and Patlak influx rate constant (K i) data, tumor by tumor. RESULTS: Tumors from all 18 patients demonstrated measurable [(18)F]fluciclatide uptake. At the final dynamic time-point (55 min after injection), renal malignancies (in 11 patients) demonstrated an average SUV80% max of 6.4 ± 2.0 (range 3.8 - 10.0), while the average SUV80% max for metastatic melanoma lesions (in 6 patients) was 3.0 ± 2.0 (range 0.7 - 6.5). There was a statistically significant difference in [(18)F]fluciclatide uptake between chromophobe and nonchromophobe renal cell carcinoma (RCCs, with SUV80% max of 8.2 ± 1.8 and 5.4 ± 1.4 (P = 0.020) and tumor-to-normal kidney (T/N) ratios of 1.5 ± 0.4 and 0.9 ± 0.2, respectively (P = 0.029). The highest Pearson's correlation coefficients were obtained when comparing Patlak K i and αvß5 OD when segregating the patient population between melanoma and RCC (r = 0.83 for K i vs. melanoma and r = 0.91 for K i vs. RCC). SUV80% max showed a moderate correlation with αvß5 and αvß3 OD. CONCLUSION: [(18)F]Fluciclatide PET imaging was well tolerated and demonstrated favorable characteristics for imaging αvß3 and αvß5 expression in melanoma and RCC. Higher uptake was observed in chromophobe than in nonchromophobe RCC. [(18)F]Fluciclatide may be a useful radiotracer to improve knowledge of integrin expression.
Assuntos
Integrina alfaVbeta3/metabolismo , Neoplasias Renais/diagnóstico por imagem , Melanoma/diagnóstico por imagem , Peptídeos , Polietilenoglicóis , Compostos Radiofarmacêuticos , Receptores de Vitronectina/metabolismo , Adulto , Feminino , Humanos , Integrina alfaVbeta3/genética , Neoplasias Renais/metabolismo , Masculino , Melanoma/metabolismo , Pessoa de Meia-Idade , Imagem Multimodal , Peptídeos/farmacocinética , Polietilenoglicóis/farmacocinética , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/efeitos adversos , Receptores de Vitronectina/genética , Tomografia Computadorizada por Raios XRESUMO
Purpose The biodistribution of gallium-68-dotatate (Ga-68-dotatate) and standardized uptake values (SUVs) using non-time-of-flight (TOF) positron emission tomography/computed tomography (PET/CT) cameras is well established. However, with the eventual retirement of older PET cameras and their replacement with newer, highly sensitive TOF PET/CT cameras, where SUV max measurements are reportedly higher, updated knowledge of normal SUV max range is needed and, to our knowledge, not previously reported. Our objectives are as follows: To establish normal Ga-68-dotatate TOF SUV max database for common structures and to aid the visual detection of abnormalities objectively. To compare SUV max values using the TOF and non-TOF algorithms. Methods Fifty consecutive patients referred routinely to our nuclear medicine service (20 men, 30 women; median age 55 years) with presumed neuroendocrine tumors underwent Ga-68-dotatate scans on a PET-CT camera having capability of reconstructing both TOF/non-TOF images. Region of interests (ROIs) were drawn around 24 normal structures as well as the primary lesion with abnormal radiotracer uptake and SUV max was measured. The same ROI was analyzed using both algorithms simultaneously and both TOF and non-TOF SUV max values were compared. Results Twelve hundred ROIs were evaluated. Non-TOF Ga-68-dotatate uptake in normal structures was in alignment with previously published studies. As compared to non-TOF, TOF images had better target to background ratios visually. TOF SUV max was higher for all structures except for lung and brain. TOF SUV max was more than double in adrenals/uncinate process of the pancreas; approximately 1.8 times in abnormal lesions, lymph nodes, pineal gland; and greater than 1.5 times in thyroid, breast, and pancreatic head. Conclusion Normal database of Ga-68-dotatate TOF SUV max is provided for common structures to aid visual detection of abnormalities objectively. Overall, TOF SUV max measures higher in identical ROIs, with abnormal lesions measuring approximately 1.8 times higher versus non-TOF technology. These findings need to be taken in consideration when comparing patient scans imaged on different PET/CT technologies.
RESUMO
Cellular therapies with cardiomyocytes produced from induced pluripotent stem cells (iPSC-CMs) offer a potential route to cardiac regeneration as a treatment for chronic ischemic heart disease. Here, we report successful long-term engraftment and in vivo maturation of autologous iPSC-CMs in two rhesus macaques with small, subclinical chronic myocardial infarctions, all without immunosuppression. Longitudinal positron emission tomography imaging using the sodium/iodide symporter (NIS) reporter gene revealed stable grafts for over 6 and 12 months, with no teratoma formation. Histological analyses suggested capability of the transplanted iPSC-CMs to mature and integrate with endogenous myocardium, with no sign of immune cell infiltration or rejection. By contrast, allogeneic iPSC-CMs were rejected within 8 weeks of transplantation. This study provides the longest-term safety and maturation data to date in any large animal model, addresses concerns regarding neoantigen immunoreactivity of autologous iPSC therapies, and suggests that autologous iPSC-CMs would similarly engraft and mature in human hearts.
Assuntos
Células-Tronco Pluripotentes Induzidas , Macaca mulatta , Miócitos Cardíacos , Animais , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/citologia , Diferenciação Celular , Humanos , Transplante Autólogo , Tomografia por Emissão de Pósitrons , Fatores de Tempo , Infarto do Miocárdio/terapia , Infarto do Miocárdio/patologiaRESUMO
Background: Osteosarcoma (OS) is an aggressive pediatric cancer with unmet therapeutic needs. Glutaminase 1 (GLS1) inhibition, alone and in combination with metformin, disrupts the bioenergetic demands of tumor progression and metastasis, showing promise for clinical translation. Materials and Methods: Three positron emission tomography (PET) clinical imaging agents, [18F]fluoro-2-deoxy-2-D-glucose ([18F]FDG), 3'-[18F]fluoro-3'-deoxythymidine ([18F]FLT), and (2S, 4R)-4-[18F]fluoroglutamine ([18F]GLN), were evaluated in the MG63.3 human OS xenograft mouse model, as companion imaging biomarkers after treatment for 7 d with a selective GLS1 inhibitor (CB-839, telaglenastat) and metformin, alone and in combination. Imaging and biodistribution data were collected from tumors and reference tissues before and after treatment. Results: Drug treatment altered tumor uptake of all three PET agents. Relative [18F]FDG uptake decreased significantly after telaglenastat treatment, but not within control and metformin-only groups. [18F]FLT tumor uptake appears to be negatively affected by tumor size. Evidence of a flare effect was seen with [18F]FLT imaging after treatment. Telaglenastat had a broad influence on [18F]GLN uptake in tumor and normal tissues. Conclusions: Image-based tumor volume quantification is recommended for this paratibial tumor model. The performance of [18F]FLT and [18F]GLN was affected by tumor size. [18F]FDG may be useful in detecting telaglenastat's impact on glycolysis. Exploration of kinetic tracer uptake protocols is needed to define clinically relevant patterns of [18F]GLN uptake in patients receiving telaglenastat.
Assuntos
Neoplasias Ósseas , Metformina , Osteossarcoma , Humanos , Camundongos , Animais , Criança , Fluordesoxiglucose F18 , Distribuição Tecidual , Xenoenxertos , Tomografia por Emissão de Pósitrons/métodos , Modelos Animais de Doenças , Osteossarcoma/diagnóstico por imagem , Osteossarcoma/tratamento farmacológico , Metformina/farmacologia , Metformina/uso terapêutico , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/tratamento farmacológico , Biomarcadores , Compostos RadiofarmacêuticosRESUMO
Neuroendocrine tumors (NETs) express somatostatin receptors (SSTRs) 2 and 5. Modified variants of somatostatin, the cognate ligand for SSTR2 and SSTR5, are used in treatment for metastatic and locoregional disease. Peptide receptor radionuclide therapy with 177Lu-DOTATATE (DOTA-octreotate), a ß-particle-emitting somatostatin derivative, has demonstrated survival benefit in patients with SSTR-positive NETs. Despite excellent results, a subset of patients has tumors that are resistant to treatment, and alternative agents are needed. Targeted α-particle therapy has been shown to kill tumors that are resistant to targeted ß-particle therapy, suggesting that targeted α-particle therapy may offer a promising treatment option for patients with 177Lu-DOTATATE-resistant disease. Although DOTATATE can chelate the clinically relevant α-particle-emitting radionuclide 225Ac, the labeling reaction requires high temperatures, and the resulting radioconjugate has suboptimal stability. Methods: We designed and synthesized MACROPATATE (MACROPA-octreotate), a novel radioconjugate capable of chelating 225Ac at room temperature, and assessed its in vitro and in vivo performance. Results: MACROPATATE demonstrated comparable affinity to DOTATATE (dissociation constant, 21 nM) in U2-OS-SSTR2, a SSTR2-positive transfected cell line. 225Ac-MACROPATATE demonstrated superior serum stability at 37°C over time compared with 225Ac-DOTATATE. Biodistribution studies demonstrated higher tumor uptake of 225Ac-MACROPATATE than of 225Ac-DOTATATE in mice engrafted with subcutaneous H69 NETs. Therapy studies showed that 225Ac-MACROPATATE exhibits significant antitumor and survival benefit compared with saline control in mice engrafted with SSTR-positive tumors. However, the increased accumulation of 225Ac-MACROPATATE in liver and kidneys and subsequent toxicity to these organs decreased its therapeutic index compared with 225Ac-DOTATATE. Conclusion: 225Ac-MACROPATATE and 225Ac-DOTATATE exhibit favorable therapeutic efficacy in animal models. Because of elevated liver and kidney accumulation and lower administered activity for dose-limiting toxicity of 225Ac-MACROPATATE, 225Ac-DOTATATE was deemed the superior agent for targeted α-particle peptide receptor radionuclide therapy.
Assuntos
Tumores Neuroendócrinos , Compostos Organometálicos , Camundongos , Animais , Octreotida , Tumores Neuroendócrinos/metabolismo , Compostos Organometálicos/uso terapêutico , Distribuição Tecidual , Somatostatina/metabolismo , Receptores de Somatostatina/metabolismo , Radioisótopos/uso terapêutico , Compostos Radiofarmacêuticos/uso terapêuticoRESUMO
The classical intent of PET imaging is to obtain the most accurate estimate of the amount of positron-emitting radiotracer in the smallest possible volume element located anywhere in the imaging subject at any time using the least amount of radioactivity. Reaching this goal, however, is confounded by an enormous array of interlinked technical issues that limit imaging system performance. As a result, advances in PET, human or animal, are the result of cumulative innovations across each of the component elements of PET, from data acquisition to image analysis. In the report that follows, we trace several of these advances across the imaging process with a focus on small animal PET.
Assuntos
Processamento de Imagem Assistida por Computador , Tomografia por Emissão de Pósitrons , Animais , Humanos , Processamento de Imagem Assistida por Computador/métodos , Tomografia por Emissão de Pósitrons/métodosRESUMO
Labeling immune cells with zirconium-89 (89Zr)-oxine has become a viable method to track cells in vivo by PET in various pre-clinical animal models and in clinical applications. Currently, 89Zr-oxine cell labeling is performed manually, which requires a highly trained specialist and is prone to human error. As the first phase in developing a fully automated radiolabeling system to address this problem, we assess the use of acoustophoresis cell washing to replace the centrifugal cell washing used in the current 89Zr-oxine cell radiolabeling procedure. To accomplish this, a cell radiolabeling procedure was developed in which two steps requiring a centrifuge to wash cells were replaced using acoustophoresis cell washing methods. The process was tested using murine EL4 lymphoma and T cells. The centrifuge cell labeling procedure was used as a control to compare the acoustophoresis cell washing procedure. The acoustophoresis method produced radiolabeled cells with similar properties to the centrifugal method when comparing labeling efficiency, labeled specific activity, efficacy of removing unbound 89Zr-oxine from the suspension, cell viability measured using annexin V/propidium iodide staining and activation function. This suggests that acoustophoresis cell washing can be used in the design of an automated benchtop, good manufacture practice-qualified acoustophoresis cell radiolabeling device.
Assuntos
Oxiquinolina , Tomografia por Emissão de Pósitrons , Animais , Anexina A5 , Sobrevivência Celular , Camundongos , Tomografia por Emissão de Pósitrons/métodos , Coloração e RotulagemRESUMO
PURPOSE: The primary aim of this study was to investigate the pharmacokinetics of 18F-DCFPyL, an 18F-labeled PSMA-based ligand, and to explore the utility of early time point positron emission tomography (PET) imaging extracted from PET data to distinguish malignant primary prostate from benign prostate tissue. PROCEDURES: Ten consecutive patients with biopsy-proven high-risk prostate cancer underwent a dynamic 18F-DCFPyL PET/CT scan of the pelvis for the first 45 min post-injection (p.i.) followed by a static PET/CT at 2 h p.i. 18F-DCFPyL uptake values and kinetics were compared between benign prostate tissue and prostate cancer, including quantitative pharmacokinetic PET parameters extracted from 18F-DCFPyL time activity curves generated from dynamic data using a two-tissue compartment model and Patlak plots. RESULTS: 18F-DCFPyL uptake values were significantly higher in primary prostate tumors than those in benign prostatic hyperplasia (BPH) and normal prostate tissue at 5 min, 30 min, and 120 min p.i. (P = 0.0002), when examining both SUVmax and SUVmean values. The two-tissue compartment model found an overall influx value (Ki) of 0.063 in primary prostate cancer, demonstrating a Ki over 15-fold higher in malignant prostate tissue compared with BPH (Ki = 0.004) and normal prostate tissue (Ki = 0.005) (P = 0.0001). CONCLUSION: High-risk primary prostate cancer is readily identified on dynamic and static, delayed, 18F-DCFPyL PET images. The tumor-to-background ratio increases over time, with optimal 18F-DCFPyL PET/CT imaging at 120 min p.i. for evaluation of prostate cancer, but not necessarily ideal for clinical application. Primary prostate cancer demonstrates different uptake kinetics in comparison to BPH and normal prostate tissue. The 15-fold difference in Ki between prostate cancer and non-cancer (BPH and normal) tissues translates to an ability to distinguish prostate cancer from normal tissue at time points as early as 5 to 10 min p.i.
Assuntos
Adenocarcinoma , Hiperplasia Prostática , Neoplasias da Próstata , Humanos , Lisina/farmacocinética , Masculino , Projetos Piloto , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de Pósitrons , Próstata/diagnóstico por imagem , Próstata/patologia , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Ureia/farmacocinéticaRESUMO
18F-DCFPyL, 18F-sodium fluoride (18F-NaF), and 18F-FDG PET/CT were compared in a prospective cohort of men with metastatic prostate cancer (PCa). Methods: Sixty-seven men (group 1) with documented metastatic PCa underwent 18F-DCFPyL and 18F-NaF PET/CT and a subgroup of 30 men (group 2) underwent additional imaging with 18F-FDG PET/CT. The tracers were compared for their detection rates, imaging concordance, associations with prostate-specific antigen (PSA), treatment at the time of imaging, and castration status. Results: Overall, 61 men had metastatic disease detected on one or more scans, and 6 men had no disease uptake on any of the PET/CT scans (and were subsequently excluded from the analysis). In group 1, 18F-NaF detected significantly more metastatic lesions than 18F-DCFPyL (median of 3 lesions vs. 2, P = 0.001) even after eliminating benign causes of 18F-NaF uptake. This difference was particularly clear for men receiving treatment (P = 0.005) or who were castration-resistant (P = 0.014). The median percentage of bone lesions that were concordant on 18F-DCFPyL and 18F-NaF was 50%. In group 2, 18F-DCFPyL detected more lesions than 18F-FDG (median of 5 lesions vs. 2, P = 0.0003), regardless of PSA level, castration status, or treatment. The median percentage of lesions that were concordant on 18F-DCFPyL and 18F-FDG was 22.2%. This percentage was slightly higher for castration-resistant than castration-sensitive men (P = 0.048). Conclusion:18F-DCFPyL PET/CT is the most versatile of the 3 PET agents for metastatic PCa; however, 18F-NaF detects more bone metastases. Imaging reveals substantial tumor heterogeneity with only 50% concordance between 18F-DCFPyL and 18F-NaF and 22% concordance for 18F-DCFPyL and 18F-FDG. These findings indicate considerable phenotypic differences among metastatic lesions.
Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias da Próstata , Fluordesoxiglucose F18 , Humanos , Masculino , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Estudos Prospectivos , Antígeno Prostático Específico , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Fluoreto de SódioRESUMO
Our objective was to investigate the factors predicting scan positivity and disease location in patients with biochemical recurrence (BCR) of prostate cancer (PCa) after primary local therapy using prostate-specific membrane antigen-targeted 18F-DCFPyL PET/CT. Methods: This was a 2-institution study including 245 BCR PCa patients after primary local therapy and negative results on conventional imaging. The patients underwent 18F-DCFPyL PET/CT. We tested for correlations of lesion detection rate and disease location with tumor characteristics, time from initial therapy, prostate-specific antigen (PSA) level, and PSA doubling time (PSAdt). Multivariate logistic regression analyses were used to determine predictors of a positive scan. Regression-based coefficients were used to develop nomograms predicting scan positivity and extrapelvic disease. Results: Overall, 79.2% (194/245) of patients had a positive 18F-DCFPyL PET/CT result, with detection rates of 48.2% (27/56), 74.3% (26/35), 84% (37/44), 96.7% (59/61), and 91.8% (45/49) for PSAs of <0.5, 0.5 to <1.0, 1.0 to <2.0, 2.0 to <5.0, and ≥5.0 ng/mL, respectively. Patients with lesions confined to the pelvis had lower PSAs than those with distant sites (1.6 ± 3.5 vs. 3.0 ± 6.3 ng/mL, P < 0.001). In patients treated with prostatectomy (n = 195), 24.1% (47/195) had a negative scan result, 46.1% (90/195) showed intrapelvic disease, and 29.7% (58/195) showed extrapelvic disease. In the postradiation subgroup (n = 50), 18F-DCFPyL PET/CT was always negative at a PSA lower than 1.0 ng/mL and extrapelvic disease was seen only when PSA was greater than 2.0 ng/mL. At multivariate analysis, PSA and PSAdt were independent predictive factors of scan positivity and the presence of extrapelvic disease in postsurgical patients, with area under the curve of 78% and 76%, respectively. PSA and PSAdt were independent predictors of the presence of extrapelvic disease in the postradiation cohort, with area under the curve of 85%. Time from treatment to scan was significantly longer for prostatectomy-bed-only recurrences than for those with bone or visceral disease (6.2 ± 6.4 vs. 2.4 ± 1.3 y, P < 0.001). Conclusion:18F-DCFPyL PET/CT offers high detection rates in BCR PCa patients. PSA and PSAdt are able to predict scan positivity and disease location. Furthermore, the presence of bone or visceral lesions is associated with shorter intervals from treatment than are prostate-bed-only recurrences. These tools might guide clinicians to select the most suitable candidates for 18F-DCFPyL PET/CT imaging.
Assuntos
Antígeno Prostático Específico , Neoplasias da Próstata , Humanos , Masculino , Recidiva Local de Neoplasia/diagnóstico por imagem , Recidiva Local de Neoplasia/cirurgia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Prostatectomia , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/terapia , RecidivaRESUMO
Background: Patients with osteoblastic bone metastases are candidates for radium-223 (223RaCl2) therapy and may undergo sodium fluoride-18 (18F-NaF) positron emission tomography-computed tomography imaging to identify bone lesions. 18F-NaF has been shown to predict 223RaCl2 uptake, but intratumor distributions of these two agents remain unclear. In this study, the authors evaluate the spatial distribution and relative uptakes of 18F-NaF and 223RaCl2 in Hu09-H3 human osteosarcoma mouse xenograft tumors at macroscopic and microscopic levels to better quantify their correlation. Materials and Methods: 18F-NaF and 223RaCl2 were co-injected into Hu09-H3 xenograft tumor severe combined immunodeficient mice. Tumor content was determined from in vivo biodistributions and visualized by PET, single photon emission computed tomography, and CT imaging. Intratumor distributions were visualized by quantitative autoradiography of tumor tissue sections and compared to histology of the same or adjacent sections. Results: 18F and 223Ra accumulated in proportional amounts in whole Hu09-H3 tumors (r2 = 0.82) and in microcalcified regions within these tumors (r2 = 0.87). Intratumor distributions of 18F and 223Ra were spatially congruent in these microcalcified regions. Conclusions: 18F-NaF and 223RaCl2 uptake are strongly correlated in heterogeneously distributed microcalcified regions of Hu09-H3 xenograft tumors, and thus, tumor accumulation of 18F is predictive of 223Ra accumulation. Hu09-H3 xenograft tumors appear to possess certain histopathological features found in patients with metastatic bone disease and may be useful in clarifying the relationship between administered 223Ra dose and therapeutic effect.
Assuntos
Rádio (Elemento)/metabolismo , Fluoreto de Sódio/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Osteoblastos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Community mitigation strategies to combat COVID-19, ranging from healthy hygiene to shelter-in-place orders, exact substantial socioeconomic costs. Judicious implementation and relaxation of restrictions amplify their public health benefits while reducing costs. We derive optimal strategies for toggling between mitigation stages using daily COVID-19 hospital admissions. With public compliance, the policy triggers ensure adequate intensive care unit capacity with high probability while minimizing the duration of strict mitigation measures. In comparison, we show that other sensible COVID-19 staging policies, including France's ICU-based thresholds and a widely adopted indicator for reopening schools and businesses, require overly restrictive measures or trigger strict stages too late to avert catastrophic surges. As proof-of-concept, we describe the optimization and maintenance of the staged alert system that has guided COVID-19 policy in a large US city (Austin, Texas) since May 2020. As cities worldwide face future pandemic waves, our findings provide a robust strategy for tracking COVID-19 hospital admissions as an early indicator of hospital surges and enacting staged measures to ensure integrity of the health system, safety of the health workforce, and public confidence.
Assuntos
COVID-19/epidemiologia , COVID-19/terapia , Hospitalização/estatística & dados numéricos , COVID-19/transmissão , COVID-19/virologia , Simulação por Computador , Atenção à Saúde/métodos , Atenção à Saúde/estatística & dados numéricos , Humanos , Unidades de Terapia Intensiva/estatística & dados numéricos , Unidades de Terapia Intensiva/provisão & distribuição , Quarentena/métodos , SARS-CoV-2/isolamento & purificação , Texas/epidemiologiaRESUMO
INTRODUCTION: A study of Pb contamination caused by the outgassing of Rn from Ra in dry, liquid, and murine tissues samples has been made to help design proper handling procedures for Ra in preclinical biodistribution work. MATERIALS AND METHODS: Pb activity levels were measured from Ra in dry, liquid, and tissue samples using aspiration and autoradiography techniques. RESULTS: Using aspiration techniques on dry samples of Ra, an average Rn outgassing rate of 51% ± 21% was measured with one measurement reaching as high as 81%. 31% ± 4% Pb contamination was measured within a 4.3 cm radius of a dry Ra source placed inside a 10-cm-diameter petri dish where the lip of the petri dish contained the Rn dissemination. Without the containment of the petri dish, Rn can reach as far as 7.8 cm from the source with trace levels spreading further. Using aspiration techniques on liquid samples of Ra, outgassing rates of Rn were 0.9% ± 0.3%. The outgassing levels in harvested organs from a biodistribution were as high as 10.1% ± 0.4% for an intraperitoneally injected mouse and 0.204% ± 0.006% for an intravenously injected mouse. The outgassing of the intravenously injected mouse carcass was less than 0.1%. CONCLUSION: In dry form, the high levels of Rn outgassing from a Ra source necessitate the use of ventilated biohoods when handling or preparing dry Ra from source vials. The very low levels of Rn outgassing from Ra liquid sources reduces exposure to Rn by a factor of 50. Rn exposure from murine organ tissue reaches levels of 10% when handling organs from an intraperitoneal injection and less than 0.2% for an intravenous injection.
Assuntos
Radioisótopos de Chumbo/análise , Rádio (Elemento)/análise , Radônio/análise , Animais , Autorradiografia , Feminino , Camundongos , Distribuição TecidualRESUMO
PURPOSE: Trials of adoptive natural killer (NK)-cell immunotherapy for hematologic malignancies have thus far shown only marginal effects, despite the potent in vitro antitumor activity of these cells. Homing of infused cells to tumor microenvironments is critical for efficacy, but has not been well characterized. We established a novel method to track and quantify the distribution of adoptively transferred NK cells using rhesus macaques (RM) as a clinically relevant preclinical model. EXPERIMENTAL DESIGN: RM NK cells were expanded ex vivo for 14-21 days, labeled with 89Zr-oxine complex, and assessed for phenotype, function, and survival. Trafficking of 89Zr-labeled ex vivo-expanded NK cells infused into RMs was monitored and quantitated by serial positron emission tomography (PET)/CT (n = 3, 2.05 ± 0.72 MBq, 23.5 ± 2.0 × 106 NK cells/kg) and compared with that of 89Zr-labeled nonexpanded NK cells, apoptotic NK cells, and hematopoietic stem and progenitor cells (HSPC). RESULTS: NK cells retained sufficient levels of 89Zr for accurate in vivo tracking for 7 days. 89Zr labeling did not alter cellular phenotype, viability, or function. PET/CT showed NK cells initially localized in the lungs, followed by their migration to the liver, spleen, and, at low levels, bone marrow. One day following transfer, only 3.4% of infused NK cells localized to the BM versus 22.1% of HSPCs. No clinical side effects were observed, and dosimetry analysis indicated low organ radioexposures of 6.24 mSv/MBq (spleen) or lower. CONCLUSIONS: These data support translation of this technique to humans to track the distribution of adoptively infused cells and to develop novel techniques to improve immune cell homing to tumor microenvironments.
Assuntos
Rastreamento de Células/métodos , Transplante de Células/métodos , Células Matadoras Naturais/citologia , Pulmão/metabolismo , Monitorização Fisiológica/métodos , Oxiquinolina/química , Radioisótopos/farmacocinética , Zircônio/farmacocinética , Animais , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/transplante , Macaca mulatta , Tomografia por Emissão de Pósitrons , Radioisótopos/química , Distribuição Tecidual , Zircônio/químicaRESUMO
Molecular imaging approaches for metabolic and physiologic imaging of tumors have become important for treatment planning and response monitoring. However, the relationship between the physiologic and metabolic aspects of tumors is not fully understood. Here, we developed new hyperpolarized MRI and electron paramagnetic resonance imaging procedures that allow more direct assessment of tumor glycolysis and oxygenation status quantitatively. We investigated the spatial relationship between hypoxia, glucose uptake, and glycolysis in three human pancreatic ductal adenocarcinoma tumor xenografts with differing physiologic and metabolic characteristics. At the bulk tumor level, there was a strong positive correlation between 18F-FDG-PET and lactate production, while pO2 was inversely related to lactate production and 18F-2-fluoro-2-deoxy-D-glucose (18F-FDG) uptake. However, metabolism was not uniform throughout the tumors, and the whole tumor results masked different localizations that became apparent while imaging. 18F-FDG uptake negatively correlated with pO2 in the center of the tumor and positively correlated with pO2 on the periphery. In contrast to pO2 and 18F-FDG uptake, lactate dehydrogenase activity was distributed relatively evenly throughout the tumor. The heterogeneity revealed by each measure suggests a multimodal molecular imaging approach can improve tumor characterization, potentially leading to better prognostics in cancer treatment. SIGNIFICANCE: Novel multimodal molecular imaging techniques reveal the potential of three interrelated imaging biomarkers to profile the tumor microenvironment and interrelationships of hypoxia, glucose uptake, and glycolysis.
Assuntos
Carcinoma Ductal Pancreático/metabolismo , Glucose/metabolismo , Oxigênio/metabolismo , Neoplasias Pancreáticas/metabolismo , Animais , Biomarcadores Tumorais/metabolismo , Carcinoma Ductal Pancreático/diagnóstico por imagem , Linhagem Celular Tumoral , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Fluordesoxiglucose F18 , Glicólise , Xenoenxertos , Humanos , Camundongos , Imagem Molecular/métodos , Neoplasias Pancreáticas/diagnóstico por imagem , Pressão Parcial , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Microambiente TumoralRESUMO
Community mitigation strategies to combat COVID-19, ranging from healthy hygiene to shelter-in-place orders, exact substantial socioeconomic costs. Judicious implementation and relaxation of restrictions amplify their public health benefits while reducing costs. We derive optimal strategies for toggling between mitigation stages using daily COVID-19 hospital admissions. With public compliance, the policy triggers ensure adequate intensive care unit capacity with high probability while minimizing the duration of strict mitigation measures. In comparison, we show that other sensible COVID-19 staging policies, including France's ICU-based thresholds and a widely adopted indicator for reopening schools and businesses, require overly restrictive measures or trigger strict stages too late to avert catastrophic surges. As cities worldwide face future pandemic waves, our findings provide a robust strategy for tracking COVID-19 hospital admissions as an early indicator of hospital surges and enacting staged measures to ensure integrity of the health system, safety of the health workforce, and public confidence.