Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanotechnology ; 33(16)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35008067

RESUMO

During last decade luminescence thermometry has become a widely studied research field due to its potential applications for real time contactless temperature sensing where usual thermometers cannot be used. Special attention is paid to the development of accurate and reliable thermal sensors with simple reading. To address existing problems of ratiometric thermometers based on thermally-coupled levels, LuVO4:Nd3+/Yb3+thermal sensors were studied as a proof-of-concept of dual-center thermometer obtained by co-doping or mixture. Both approaches to create a dual-center sensor were compared in terms of energy transfer efficiency, relative sensitivity, and temperature resolution. Effect of excitation mechanism and Yb3+doping concentration on thermometric performances was also investigated. The best characteristics ofSr = 0.34% K-1@298 K and ΔT = 0.2 K were obtained for mixed phosphors upon host excitation.

2.
ACS Appl Mater Interfaces ; 14(1): 1757-1764, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34978182

RESUMO

Accurate contactless thermometry is required in many rapidly developing modern applications such as biomedicine, micro- and nanoelectronics, and integrated optics. Ratiometric luminescence thermal sensing attracts a lot of attention due to its robustness toward systematic errors. Herein, a phonon-assisted upconversion in LuVO4:Nd3+/Yb3+ nanophosphors was successfully applied for temperature measurements within the 323-873 K range via the luminescence intensity ratio technique. Dual-activating samples were obtained by codoping and mixing single-doped nanopowders. The effect of the type of dispersion system and the Yb3+ doping concentration was studied in terms of thermometric performances. The relative thermal sensitivity reached a value of 2.6% K-1, while the best temperature resolution was 0.2 K. The presented findings show the way to enhance the thermometric characteristics of contactless optical sensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA