Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
EMBO J ; 36(17): 2488-2509, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28694245

RESUMO

The synaptonemal complex (SC) is a proteinaceous macromolecular assembly that forms during meiotic prophase I and mediates adhesion of paired homologous chromosomes along their entire lengths. Although prompt disassembly of the SC during exit from prophase I is a landmark event of meiosis, the underlying mechanism regulating SC destruction has remained elusive. Here, we show that DDK (Dbf4-dependent Cdc7 kinase) is central to SC destruction. Upon exit from prophase I, Dbf4, the regulatory subunit of DDK, directly associates with and is phosphorylated by the Polo-like kinase Cdc5. In parallel, upregulated CDK1 activity also targets Dbf4. An enhanced Dbf4-Cdc5 interaction pronounced phosphorylation of Dbf4 and accelerated SC destruction, while reduced/abolished Dbf4 phosphorylation hampered destruction of SC proteins. SC destruction relieved meiotic inhibition of the ubiquitous recombinase Rad51, suggesting that the mitotic recombination machinery is reactivated following prophase I exit to repair any persisting meiotic DNA double-strand breaks. Taken together, we propose that the concerted action of DDK, Polo-like kinase, and CDK1 promotes efficient SC destruction at the end of prophase I to ensure faithful inheritance of the genome.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Fúngicas/metabolismo , Meiose/fisiologia , Proteínas Quinases/metabolismo , Complexo Sinaptonêmico/metabolismo , Fosforilação , Saccharomycetales/metabolismo
2.
Biometals ; 27(6): 1323-35, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25298233

RESUMO

Μetal cofactors are required for enzymatic catalysis and structural stability of many proteins. Physiological metal requirements underpin the evolution of cellular and systemic regulatory mechanisms for metal uptake, storage and excretion. Considering the role of metal biology in animal evolution, this paper asks whether metal content is conserved between different fruit flies. A similar metal homeostasis was previously observed in Drosophilidae flies cultivated on the same larval medium. Each species accumulated in the order of 200 µg iron and zinc and approximately ten-fold less manganese and copper per gram dry weight of the adult insect. In this paper, data on the metal content in fourteen species of Tephritidae, which are major agricultural pests worldwide, are presented. These fruit flies can be polyphagous (e.g., Ceratitis capitata) or strictly monophagous (e.g., Bactrocera oleae) or oligophagous (e.g., Anastrepha grandis) and were maintained in the laboratory on five distinct diets based on olive oil, carrot, wheat bran, zucchini and molasses, respectively. The data indicate that overall metal content and distribution between the Tephritidae and Drosophilidae species was similar. Reduced metal concentration was observed in B. oleae. Feeding the polyphagous C. capitata with the diet of B. oleae resulted in a significant quantitative reduction of all metals. Thus, dietary components affect metal content in some Tephritidae. Nevertheless, although the evidence suggests some fruit fly species evolved preferences in the use or storage of particular metals, no metal concentration varied in order of magnitude between these two families of Diptera that evolved independently for over 100 million years.


Assuntos
Evolução Biológica , Dípteros/classificação , Drosophilidae/química , Metais/análise , Tephritidae/química , Animais , Ceratitis capitata/química , Ceratitis capitata/crescimento & desenvolvimento , Quelantes , Dieta , Dípteros/metabolismo , Drosophila/química , Drosophila/crescimento & desenvolvimento , Drosophilidae/crescimento & desenvolvimento , Homeostase , Larva , Metais/farmacocinética , Melaço , Azeite de Oliva , Óleos de Plantas , Especificidade da Espécie , Espectrofotometria Atômica , Tephritidae/crescimento & desenvolvimento , Verduras
3.
Elife ; 102021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33493431

RESUMO

Homologous recombination (HR) is essential for maintaining genome stability. Although Rad51 is the key protein that drives HR, multiple auxiliary factors interact with Rad51 to potentiate its activity. Here, we present an interdisciplinary characterization of the interactions between Rad51 and these factors. Through structural analysis, we identified an evolutionarily conserved acidic patch of Rad51. The neutralization of this patch completely abolished recombinational DNA repair due to defects in the recruitment of Rad51 to DNA damage sites. This acidic patch was found to be important for the interaction with Rad55-Rad57 and essential for the interaction with Rad52. Furthermore, biochemical reconstitutions demonstrated that neutralization of this acidic patch also impaired the interaction with Rad54, indicating that a single motif is important for the interaction with multiple auxiliary factors. We propose that this patch is a fundamental motif that facilitates interactions with auxiliary factors and is therefore essential for recombinational DNA repair.


The DNA molecule contains the chemical instructions necessary for life. Its physical integrity is therefore vital, yet it is also under constant threat from external and internal factors. As a result, organisms have evolved an arsenal of mechanisms to repair damaged DNA. For instance, when the two complementary strands that form the DNA molecule are broken at the same location, the cell triggers a mechanism known as homologous recombination. A protein known as Rad51 orchestrates this process, helped by an array of other proteins that include Rad55-Rad57, Rad52, and Rad54. These physically bind to Rad51 and activate it in different ways. However, exactly how these interactions take place remained unclear. To find out more, Afshar et al. examined models of the structure of Rad51, revealing that three of the protein's building blocks create a prominent, negatively charged patch that could be important for DNA repair. Yeast cells were then genetically manipulated to produce a modified version of Rad51 in which the three building blocks were neutralised. These organisms were unable to repair their DNA. Further biochemical tests showed that the modified protein could no longer attach well to Rad55-Rad57 or Rad54, and could not stick to Rad52 at all. In fact, without its negatively charged patch, Rad51 could not find the ends of broken DNA strands, a process which is normally aided by Rad55-Rad57 and Rad52. Taken together, these results suggest that the helper proteins all interact with Rad51 in the same place, even though they play different roles. Faulty DNA repair processes have been linked to devastating consequences such as cell death or cancer. Understanding the details of DNA repair in yeast can serve as a template for research in more complex organisms, opening the possibility of applications for human health.


Assuntos
Recombinação Homóloga/genética , Rad51 Recombinase/genética , Reparo de DNA por Recombinação/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Rad51 Recombinase/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
4.
Elife ; 92020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32204793

RESUMO

Although Rad51 is the key protein in homologous recombination (HR), a major DNA double-strand break repair pathway, several auxiliary factors interact with Rad51 to promote productive HR. We present an interdisciplinary characterization of the interaction between Rad51 and Swi5-Sfr1, a conserved auxiliary factor. Two distinct sites within the intrinsically disordered N-terminus of Sfr1 (Sfr1N) were found to cooperatively bind Rad51. Deletion of this domain impaired Rad51 stimulation in vitro and rendered cells sensitive to DNA damage. By contrast, amino acid-substitution mutants, which had comparable biochemical defects, could promote DNA repair, suggesting that Sfr1N has another role in addition to Rad51 binding. Unexpectedly, the DNA repair observed in these mutants was dependent on Rad55-Rad57, another auxiliary factor complex hitherto thought to function independently of Swi5-Sfr1. When combined with the finding that they form a higher-order complex, our results imply that Swi5-Sfr1 and Rad55-Rad57 can collaboratively stimulate Rad51 in Schizosaccharomyces pombe.


The DNA within cells contains the instructions necessary for life and it must be carefully maintained. DNA is constantly being damaged by radiation and other factors so cells have evolved an arsenal of mechanisms that repair this damage. An enzyme called Rad51 drives one such DNA repair process known as homologous recombination. A pair of regulatory proteins known as the Swi5-Sfr1 complex binds to Rad51 and activates it. The complex can be thought of as containing two modules with distinct roles: one comprising the first half of the Sfr1 protein and that is capable of binding to Rad51, and a second consisting of the rest of Sfr1 bound to Swi5, which is responsible for activating Rad51. Here, Argunhan, Sakakura et al. used genetic and biochemical approaches to study how this first module, known as "Sfr1N", interacts with Rad51 in a microbe known as fission yeast. The experiments showed that both modules of Swi5-Sfr1 were important for Rad51 to drive homologous recombination. Swi5-Sfr1 complexes carrying mutations in the region of Sfr1N that binds to Rad51 were unable to activate Rad51 in a test tube. However, fission yeast cells containing the same mutations were able to repair their DNA without problems. This was due to the presence of another pair of proteins known as the Rad55-Rad57 complex that also bound to Swi5-Sfr1. The findings of Argunhan, Sakakura et al. suggest that the Swi5-Sfr1 and Rad55-Rad57 complexes work together to activate Rad51. Many genetically inherited diseases and cancers have been linked to mutations in DNA repair proteins. The fundamental mechanisms of DNA repair are very similar from yeast to humans and other animals, therefore, understanding the details of DNA repair in yeast may ultimately benefit human health in the future.


Assuntos
Dano ao DNA/fisiologia , Reparo do DNA/fisiologia , Rad51 Recombinase/metabolismo , Schizosaccharomyces/metabolismo , Escherichia coli , Regulação Fúngica da Expressão Gênica , Espectroscopia de Ressonância Magnética , Ligação Proteica , Domínios Proteicos , Rad51 Recombinase/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
5.
J Cell Biol ; 211(4): 785-93, 2015 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-26598615

RESUMO

During meiotic prophase I, proteinaceous structures called synaptonemal complexes (SCs) connect homologous chromosomes along their lengths via polymeric arrays of transverse filaments (TFs). Thus, control of TF polymerization is central to SC formation. Using budding yeast, we show that efficiency of TF polymerization closely correlates with the extent of SUMO conjugation to Ecm11, a component of SCs. HyperSUMOylation of Ecm11 leads to highly aggregative TFs, causing frequent assembly of extrachromosomal structures. In contrast, hypoSUMOylation leads to discontinuous, fragmented SCs, indicative of defective TF polymerization. We further show that the N terminus of the yeast TF, Zip1, serves as an activator for Ecm11 SUMOylation. Coexpression of the Zip1 N terminus and Gmc2, a binding partner of Ecm11, is sufficient to induce robust polySUMOylation of Ecm11 in nonmeiotic cells. Because TF assembly is mediated through N-terminal head-to-head associations, our results suggest that mutual activation between TF assembly and Ecm11 polySUMOylation acts as a positive feedback loop that underpins SC assembly.


Assuntos
Proteínas Fúngicas/metabolismo , Saccharomycetales/metabolismo , Sumoilação , Complexo Sinaptonêmico/metabolismo , Proteínas de Ciclo Celular/metabolismo , Endopeptidases/metabolismo , Retroalimentação Fisiológica , Proteínas Nucleares/metabolismo , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica
6.
FEBS Open Bio ; 3: 302-4, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23951551

RESUMO

A newly identified human locus on chromosome 15 was recently associated with zinc accumulation. Based on a prior report of a threefold difference in zinc accumulation between fumble(1) heterozygous mutants and control fly strains, it was suggested that phosphopantothenoylcysteine decarboxylase might affect zinc status through its effects on vitamin B5 (pantothenate) metabolism. We report here that outcrossed fumble(1) heterozygous mutant flies with low zinc content have been recovered, suggesting that pantothenate metabolism did not alter zinc homeostasis in fumble(1) heterozygous flies. We show instead that the Drosophila condition of low body zinc accumulation is an X-chromosome-linked recessive trait.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA