Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 19(11): 7950-7956, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31658421

RESUMO

The ever-increasing demand for faster, smaller, and energy-efficient devices has pushed the frontiers of research toward silicon photonics to meet the challenges for fabricating the next generation of computing systems. In order to design new devices at the nanoscale, it is important to understand and be able to control material properties, which may differ significantly from their bulk counterparts. Here, we demonstrate very large tunability of phonon-photon interactions in Si nanowire cavities by engineering the cavity mode at the emission wavelength. Raman scattering measurements performed to quantify these interactions reveal that the anti-Stokes to Stokes scattering ratio can vary from 0.035 to 0.405 in Si nanowires compared to a value of 0.1 for bulk Si, demonstrating tunability by over an order of magnitude. Moreover, a ratio of 0.85 was attained at a temperature of 580 K, which is the highest value ever reported for Si. Cavity modes that can be easily changed by changing the nanowire diameter, cavity geometry, or excitation wavelength provide efficient ways of tuning these interactions. Nanocavity engineering offers a new approach for tuning phonon-photon interactions in silicon and opens up new avenues of research and applications in the fields of silicon photonics, Raman lasers, telecommunication, and optical cooling.

2.
Nano Lett ; 19(2): 1204-1209, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30682253

RESUMO

Silicon photonics has been a very active area of research especially in the past two decades in order to meet the ever-increasing demand for more computational power and faster device speeds and their natural compatibility with complementary metal-oxide semiconductor. In order to develop Si as a useful photonics material, essential photonic components such as light sources, waveguides, wavelength convertors, modulators, and detectors need to be developed and integrated. However, due to the indirect electronic bandgap of Si, conventional light emission devices such as light-emitting diodes and lasers cannot be built. Therefore, there has been considerable interest in developing Si-based Raman lasers, which are nonlinear devices and require large stimulated Raman scattering (SRS) in an optical cavity. However, due to the low quantum yield of SRS in Si, Raman lasers have very large device footprints and high lasing threshold, making them unsuitable for faster, smaller, and energy-efficient devices. Here, we report strong SRS and extremely high Raman gain in Si nanowire optical cavities in the visible region with measured SRS threshold as low as 30 kW/cm2. At cavity mode resonance, light is confined into a low mode volume and high intensity electromagnetic mode inside the Si nanowire due to its high refractive index, which leads to strong SRS at low pump intensities. Electromagnetic calculations reveal greater than 6 orders of magnitude increase in Raman gain coefficient at 532 nm pump wavelength, compared to the gain value at 1.55 µm wavelength reported in literature, despite the 108 higher losses at 532 nm. Because of the high gain in such small structures, we believe that this is a significant first step in realizing a monolithically integrable nanoscale low-powered Si Raman laser.

3.
Nano Lett ; 17(3): 1839-1845, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28166635

RESUMO

The field of plasmonics has attracted considerable attention in recent years because of potential applications in various fields such as nanophotonics, photovoltaics, energy conversion, catalysis, and therapeutics. It is becoming increasing clear that intrinsic high losses associated with plasmons can be utilized to create new device concepts to harvest the generated heat. It is therefore important to design cavities, which can harvest optical excitations efficiently to generate heat. We report a highly engineered nanowire cavity, which utilizes a high dielectric silicon core with a thin plasmonic film (Au) to create an effective metallic cavity to strongly confine light, which when coupled with localized surface plasmons in the nanoparticles of the thin metal film produces exceptionally high temperatures upon laser irradiation. Raman spectroscopy of the silicon core enables precise measurements of the cavity temperature, which can reach values as high as 1000 K. The same Si-Au cavity with enhanced plasmonic activity when coupled with TiO2 nanorods increases the hydrogen production rate by ∼40% compared to similar Au-TiO2 system without Si core, in ethanol photoreforming reactions. These highly engineered thermoplasmonic devices, which integrate three different cavity concepts (high refractive index core, metallo-dielectric cavity, and localized surface plasmons) along with the ease of fabrication demonstrate a possible pathway for designing optimized plasmonic devices with applications in energy conversion and catalysis.

4.
Nanomaterials (Basel) ; 13(3)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36770499

RESUMO

Herein, we demonstrate a process for the synthesis of a highly crystalline bi-functional manganese (Mn)-doped zinc silicate (Zn2SiO4) nanostructures using a low-cost sol-gel route followed by solid state reaction method. Structural and morphological characterizations of Mn-doped Zn2SiO4 with variable doping concentration of 0.03, 0.05, 0.1, 0.2, 0.5, 1.0, and 2.0 wt% were investigated by using X-ray diffraction and high-resolution transmission electron microscopy (HR-TEM) techniques. HR-TEM-assisted elemental mapping of the as-grown sample was conducted to confirm the presence of Mn in Zn2SiO4. Photoluminescence (PL) spectra indicated that the Mn-doped Zn2SiO4 nanostructures exhibited strong green emission at 521 nm under 259 nm excitation wavelengths. It was observed that PL intensity increased with the increase of Mn-doping concentration in Zn2SiO4 nanostructures, with no change in emission peak position. Furthermore, magnetism in doped Zn2SiO4 nanostructures was probed by static DC magnetization measurement. The observed photoluminescence and magnetic properties in Mn-doped Zn2SiO4 nanostructures are discussed in terms of structural defect/lattice strain caused by Mn doping and the Jahn-Teller effect. These bi-functional properties of as-synthesized Zn2SiO4 nanostructures provide a new platform for their potential applications towards magneto-optical and spintronic and devices areas.

5.
Sci Total Environ ; 825: 153892, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35181360

RESUMO

Over the past few years, we are witnessing the advent of a revolutionary bioengineering technology in biochar production and its application in waste treatment and an important component in power generation devices. Biochar is a solid product, highly rich in carbon, whose adsorption properties are ideal for wastewater decontamination. Due to its high specific surface area to volume ratio, it can be utilized for many environmental applications. It has diverse applications in various fields. This review focuses on its various applications in wastewater treatment to remove various pollutants such as heavy metals, dyes, organic compounds, and pesticides. This review also highlights several energy-based applications in batteries, supercapacitors, and microbial fuel cells. It described information about the different feedstock materials to produce LB-derived biochar, the various conditions for the production process, i.e., pyrolysis and the modification methods of biochar for improving properties required for wastewater treatment. The present review helps the readers understand the importance of biochar in wastewater treatment and its application in power generation in terms of batteries, supercapacitors, microbial fuel cells, applications in fuel production, pollutant and dye removal, particularly the latest development on using LB-derived biochar. This review also highlights the economic and environmental sustainability along with the commercialization of biochar plants. It also describes various pyrolytic reactors utilized for biochar production.


Assuntos
Poluentes Ambientais , Metais Pesados , Purificação da Água , Adsorção , Biomassa , Carvão Vegetal , Corantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA