Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Mol Biol Plants ; 30(6): 1021-1027, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38974355

RESUMO

Carthamus tinctorius L. (Safflower) is an important oilseed crop that is cultivated globally. Aphids are a serious pest of safflower and cause significant yield losses of up to 80% due to their ability to multiply rapidly by parthenogenesis. In this study, we report the identification of an aphid-tolerant accession in safflower following screening of a representative global germplasm collection of 327 accessions from 37 countries. Field-based screening methods gave inconsistent and ambiguous results for aphid tolerance between natural and controlled infestation assays and required ~ 3 months for completion. Therefore, we used a rapid, high-throughput hydroponics-based assay system that allows phenotyping of aphid tolerance/susceptibility in a large number of plants in a limited area, significantly reduces the time required to ~ 45 days and avoids inconsistencies observed in field-based studies. We identified one accession out of the 327 tested germplasm lines that demonstrated aphid tolerance in field-based natural and controlled infestation studies and also using the hydroponics approach. Inheritance analysis of the trait was conducted using the hydroponics approach on F1 and F2 progeny generated from a cross between the tolerant and susceptible lines. Aphid-tolerance was observed to be a dominant trait governed by a single locus/gene that can be mobilized after mapping into cultivated varieties of safflower. The hydroponics-based assay described in this study would be very useful for studying the molecular mechanism of aphid-tolerance in safflower and can also be used for bioassays in several other crops that are amenable to hydroponics-based growth. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01467-0.

2.
Physiol Mol Biol Plants ; 30(1): 93-108, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38435852

RESUMO

Rice, a critical cereal crop, grapples with productivity challenges due to its inherent sensitivity to low temperatures, primarily during the seedling and booting stages. Recognizing the polygenic complexity of cold stress signaling in rice, a meta-analysis was undertaken, focusing on 20 physiological traits integral to cold tolerance. This initiative allowed the consolidation of genetic data from 242 QTLs into 58 meta-QTLs, thereby significantly constricting the genetic and physical intervals, with 84% of meta-QTLs (MQTLs) being reduced to less than 2 Mb. The list of 10,505 genes within these MQTLs, was further refined utilizing expression datasets to pinpoint 46 pivotal genes exhibiting noteworthy differential regulation during cold stress. The study underscored the presence of several TFs such as WRKY, NAC, CBF/DREB, MYB, and bHLH, known for their roles in cold stress response. Further, ortho-analysis involving maize, barley, and Arabidopsis identified OsWRKY71, among others, as a prospective candidate for enhancing cold tolerance in diverse crop plants. In conclusion, our study delineates the intricate genetic architecture underpinning cold tolerance in rice and propounds significant candidate genes, offering crucial insights for further research and breeding strategies focused on fortifying crops against cold stress, thereby bolstering global food resilience. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01412-1.

3.
Plant Cell Rep ; 42(10): 1531-1555, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37481775

RESUMO

KEY MESSAGE: RNA modifications and editing changes constitute 'epitranscriptome' and are crucial in regulating the development and stress response in plants. Exploration of the epitranscriptome and associated machinery would facilitate the engineering of stress tolerance in crops. RNA editing and modifications post-transcriptionally decorate almost all classes of cellular RNAs, including tRNAs, rRNAs, snRNAs, lncRNAs and mRNAs, with more than 170 known modifications, among which m6A, Ψ, m5C, 8-OHG and C-to-U editing are the most abundant. Together, these modifications constitute the "epitranscriptome", and contribute to changes in several RNA attributes, thus providing an additional structural and functional diversification to the "cellular messages" and adding another layer of gene regulation in organisms, including plants. Numerous evidences suggest that RNA modifications have a widespread impact on plant development as well as in regulating the response of plants to abiotic and biotic stresses. High-throughput sequencing studies demonstrate that the landscapes of m6A, m5C, Am, Cm, C-to-U, U-to-G, and A-to-I editing are remarkably dynamic during stress conditions in plants. GO analysis of transcripts enriched in Ψ, m6A and m5C modifications have identified bonafide components of stress regulatory pathways. Furthermore, significant alterations in the expression pattern of genes encoding writers, readers, and erasers of certain modifications have been documented when plants are grown in challenging environments. Notably, manipulating the expression levels of a few components of RNA editing machinery markedly influenced the stress tolerance in plants. We provide updated information on the current understanding on the contribution of RNA modifications in shaping the stress responses in plants. Unraveling of the epitranscriptome has opened new avenues for designing crops with enhanced productivity and stress resilience in view of global climate change.


Assuntos
Regulação da Expressão Gênica , RNA , RNA/metabolismo , RNA Mensageiro/genética , Edição de RNA/genética , RNA Ribossômico
4.
BMC Biol ; 20(1): 134, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35676681

RESUMO

BACKGROUND: New genes continuously emerge from non-coding DNA or by diverging from existing genes, but most of them are rapidly lost and only a few become fixed within the population. We hypothesized that young genes are subject to transcriptional and post-transcriptional regulation to limit their expression and minimize their exposure to purifying selection. RESULTS: We performed a protein-based homology search across the tree of life to determine the evolutionary age of protein-coding genes present in the rice genome. We found that young genes in rice have relatively low expression levels, which can be attributed to distal enhancers, and closed chromatin conformation at their transcription start sites (TSS). The chromatin in TSS regions can be re-modeled in response to abiotic stress, indicating conditional expression of young genes. Furthermore, transcripts of young genes in Arabidopsis tend to be targeted by nonsense-mediated RNA decay, presenting another layer of regulation limiting their expression. CONCLUSIONS: These data suggest that transcriptional and post-transcriptional mechanisms contribute to the conditional expression of young genes, which may alleviate purging selection while providing an opportunity for phenotypic exposure and functionalization.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Oryza , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cromatina/genética , Cromatina/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/metabolismo , Plantas/metabolismo , Sítio de Iniciação de Transcrição
5.
Physiol Mol Biol Plants ; 29(12): 1981-2004, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38222285

RESUMO

Pseudouridylation, the conversion of uridine (U) to pseudouridine (Ñ°), is one of the most prevalent and evolutionary conserved RNA modifications, which is catalyzed by pseudouridine synthase (PUS) enzymes. Ñ°s play a crucial epitranscriptomic role by regulating attributes of cellular RNAs across diverse organisms. However, the precise biological functions of PUSs in plants remain largely elusive. In this study, we identified and characterized 21 members in the rice PUS family which were categorized into six distinct subfamilies, with RluA and TruA emerging as the most extensive. A comprehensive analysis of domain structures, motifs, and homology modeling revealed that OsPUSs possess all canonical features of true PUS proteins, essential for substrate recognition and catalysis. The exploration of OsPUS promoters revealed presence of cis-acting regulatory elements associated with hormone and abiotic stress responses. Expression analysis of OsPUS genes showed differential expression at developmental stages and under stress conditions. Notably, OsTruB3 displayed high expression in salt, heat, and drought stresses. Several OsRluA members showed induction in heat stress, while a significant decline in expression was observed for various OsTruA members in drought and salinity. Furthermore, miRNAs predicted to target OsPUSs were themselves responsive to variable stresses, adding an additional layer of regulatory complexity of OsPUSs. Study of protein-protein interaction networks provided substantial support for the potential regulatory role of OsPUSs in numerous cellular and stress response pathways. Conclusively, our study provides functional insights into the OsPUS family, contributing to a better understanding of their crucial roles in shaping the development and stress adaptation in rice. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01396-4.

6.
Physiol Mol Biol Plants ; 28(8): 1515-1534, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36389097

RESUMO

Senescence is the ultimate phase in the life cycle of leaves which is crucial for recycling of nutrients to maintain plant fitness and reproductive success. The earliest visible manifestation of leaf senescence is their yellowing, which usually commences with the breakdown of chlorophyll. The degradation process involves a gradual and highly coordinated disassembly of macromolecules resulting in the accumulation of nutrients, which are subsequently mobilized from the senescing leaves to the developing organs. Leaf senescence progresses under overly tight genetic and molecular control involving a well-orchestrated and intricate network of regulators that coordinate spatio-temporally with the influence of both internal and external cues. Owing to the advancements in omics technologies, the availability of mutant resources, scalability of molecular analyses methodologies and the advanced capacity to integrate multidimensional data, our understanding of the genetic and molecular basis of leaf ageing has greatly expanded. The review provides a compilation of the multitier regulation of senescence process and the interrelation between the environment and the terminal phase of leaf development. The knowledge gained would benefit in devising the strategies for manipulation of leaf senescence process to improve crop quality and productivity.

7.
J Exp Bot ; 71(17): 5280-5293, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32526034

RESUMO

Limited information is available on abiotic stress-mediated alterations of chromatin conformation influencing gene expression in plants. In order to characterize the effect of abiotic stresses on changes in chromatin conformation, we employed FAIRE-seq (formaldehyde-assisted isolation of regulatory element sequencing) and DNase-seq to isolate accessible regions of chromatin from Arabidopsis thaliana seedlings exposed to either heat, cold, salt, or drought stress. Approximately 25% of regions in the Arabidopsis genome were captured as open chromatin, the majority of which included promoters and exons. A large proportion of chromatin regions apparently did not change their conformation in response to any of the four stresses. Digital footprints present within these regions had differential enrichment of motifs for binding of 43 different transcription factors. Further, in contrast to drought and salt stress, both high and low temperature treatments resulted in increased accessibility of the chromatin. Also, pseudogenes attained increased chromatin accessibility in response to cold and drought stresses. The highly accessible and inaccessible chromatin regions of seedlings exposed to drought stress correlated with the Ser/Thr protein kinases (MLK1 and MLK2)-mediated reduction and increase in H3 phosphorylation (H3T3Ph), respectively. The presented results provide a deeper understanding of abiotic stress-mediated chromatin modulation in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cromatina , Secas , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico
8.
Planta ; 251(1): 26, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31797121

RESUMO

MAIN CONCLUSION: Silencing of CI-sHsps by RNAi negatively affected the seed germination process and heat stress response of rice seedlings. Seed size of RNAiCI-sHsp was reduced as compared to wild-type plants. Small heat shock proteins (sHsps) are the ATP-independent chaperones ubiquitously expressed in response to diverse environmental and developmental cues. Cytosolic sHsps constitute the major repertoire of sHsp family. Rice cytosolic class I (CI)-sHsps consists of seven members (Hsp16.9A, Hsp16.9B, Hsp16.9C, Hsp17.4, Hsp17.7, Hsp17.9A and Hsp18). Purified OsHsp17.4 and OsHsp17.9A proteins exhibited chaperone activity by preventing formation of large aggregates with model substrate citrate synthase. OsHsp16.9A and OsHsp17.4 showed nucleo-cytoplasmic localization, while the localization of OsHsp17.9A was preferentially in the nucleus. Transgenic tobacco plants expressing OsHsp17.4 and OsHsp17.9A proteins and Arabidopsis plants ectopically expressing OsHsp17.4 protein showed improved thermotolerance to the respective trans-hosts during the post-stress recovery process. Single hairpin construct was designed to generate all CI-sHsp silenced (RNAiCI-sHsp) rice lines. The major vegetative and reproductive attributes of the RNAiCI-sHsp plants were comparable to the wild-type rice plants. Basal and acquired thermotolerance response of RNAiCI-sHsp seedlings of rice was mildly affected. The seed length of RNAiCI-sHsp rice plants was significantly reduced. The seed germination process was delayed and seed thermotolerance of RNAiCI-sHsp was negatively affected than the non-transgenic seeds. We, thus, implicate that sHsp genes are critical in seedling thermotolerance and seed physiology.


Assuntos
Inativação Gênica , Proteínas de Choque Térmico Pequenas/metabolismo , Oryza/genética , Oryza/fisiologia , Proteínas de Plantas/metabolismo , Plântula/fisiologia , Sementes/fisiologia , Termotolerância/fisiologia , Arabidopsis/genética , Arabidopsis/fisiologia , Citrato (si)-Sintase/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação/genética , Proteínas de Choque Térmico Pequenas/genética , Fenótipo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Ligação Proteica , Multimerização Proteica , Protoplastos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sementes/genética , Termotolerância/genética , Nicotiana/genética , Transcriptoma/genética
9.
BMC Plant Biol ; 15: 9, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25604693

RESUMO

BACKGROUND: Brassica juncea var. Varuna is an economically important oilseed crop of family Brassicaceae which is vulnerable to abiotic stresses at specific stages in its life cycle. Till date no attempts have been made to elucidate genome-wide changes in its transcriptome against high temperature or drought stress. To gain global insights into genes, transcription factors and kinases regulated by these stresses and to explore information on coding transcripts that are associated with traits of agronomic importance, we utilized a combinatorial approach of next generation sequencing and de-novo assembly to discover B. juncea transcriptome associated with high temperature and drought stresses. RESULTS: We constructed and sequenced three transcriptome libraries namely Brassica control (BC), Brassica high temperature stress (BHS) and Brassica drought stress (BDS). More than 180 million purity filtered reads were generated which were processed through quality parameters and high quality reads were assembled de-novo using SOAPdenovo assembler. A total of 77750 unique transcripts were identified out of which 69,245 (89%) were annotated with high confidence. We established a subset of 19110 transcripts, which were differentially regulated by either high temperature and/or drought stress. Furthermore, 886 and 2834 transcripts that code for transcription factors and kinases, respectively, were also identified. Many of these were responsive to high temperature, drought or both stresses. Maximum number of up-regulated transcription factors in high temperature and drought stress belonged to heat shock factors (HSFs) and dehydration responsive element-binding (DREB) families, respectively. We also identified 239 metabolic pathways, which were perturbed during high temperature and drought treatments. Analysis of gene ontologies associated with differentially regulated genes forecasted their involvement in diverse biological processes. CONCLUSIONS: Our study provides first comprehensive discovery of B. juncea transcriptome under high temperature and drought stress conditions. Transcriptome resource generated in this study will enhance our understanding on the molecular mechanisms involved in defining the response of B. juncea against two important abiotic stresses. Furthermore this information would benefit designing of efficient crop improvement strategies for tolerance against conditions of high temperature regimes and water scarcity.


Assuntos
Produtos Agrícolas/economia , Produtos Agrícolas/genética , Secas , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Mostardeira/genética , Estresse Fisiológico/genética , Temperatura , Perfilação da Expressão Gênica , Ontologia Genética , Anotação de Sequência Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Controle de Qualidade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Análise de Sequência de RNA , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transcriptoma
10.
BMC Plant Biol ; 14: 6, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24397411

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are ubiquitous components of endogenous plant transcriptome. miRNAs are small, single-stranded and ~21 nt long RNAs which regulate gene expression at the post-transcriptional level and are known to play essential roles in various aspects of plant development and growth. Previously, a number of miRNAs have been identified in potato through in silico analysis and deep sequencing approach. However, identification of miRNAs through deep sequencing approach was limited to a few tissue types and developmental stages. This study reports the identification and characterization of potato miRNAs in three different vegetative tissues and four stages of tuber development by high throughput sequencing. RESULTS: Small RNA libraries were constructed from leaf, stem, root and four early developmental stages of tuberization and subjected to deep sequencing, followed by bioinformatics analysis. A total of 89 conserved miRNAs (belonging to 33 families), 147 potato-specific miRNAs (with star sequence) and 112 candidate potato-specific miRNAs (without star sequence) were identified. The digital expression profiling based on TPM (Transcripts Per Million) and qRT-PCR analysis of conserved and potato-specific miRNAs revealed that some of the miRNAs showed tissue specific expression (leaf, stem and root) while a few demonstrated tuberization stage-specific expressions. Targets were predicted for identified conserved and potato-specific miRNAs, and predicted targets of four conserved miRNAs, miR160, miR164, miR172 and miR171, which are ARF16 (Auxin Response Factor 16), NAM (NO APICAL MERISTEM), RAP1 (Relative to APETALA2 1) and HAM (HAIRY MERISTEM) respectively, were experimentally validated using 5' RLM-RACE (RNA ligase mediated rapid amplification of cDNA ends). Gene ontology (GO) analysis for potato-specific miRNAs was also performed to predict their potential biological functions. CONCLUSIONS: We report a comprehensive study of potato miRNAs at genome-wide level by high-throughput sequencing and demonstrate that these miRNAs have tissue and/or developmental stage-specific expression profile. Also, predicted targets of conserved miRNAs were experimentally confirmed for the first time in potato. Our findings indicate the existence of extensive and complex small RNA population in this crop and suggest their important role in pathways involved in diverse biological processes, including tuber development.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Folhas de Planta/genética , Raízes de Plantas/genética , Caules de Planta/genética , RNA de Plantas/genética , Análise de Sequência de RNA/métodos , Solanum tuberosum/genética , Regulação da Expressão Gênica de Plantas
11.
PLoS Genet ; 7(3): e1001358, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21483759

RESUMO

Stem cells are crucial in morphogenesis in plants and animals. Much is known about the mechanisms that maintain stem cell fates or trigger their terminal differentiation. However, little is known about how developmental time impacts stem cell fates. Using Arabidopsis floral stem cells as a model, we show that stem cells can undergo precise temporal regulation governed by mechanisms that are distinct from, but integrated with, those that specify cell fates. We show that two microRNAs, miR172 and miR165/166, through targeting APETALA2 and type III homeodomain-leucine zipper (HD-Zip) genes, respectively, regulate the temporal program of floral stem cells. In particular, we reveal a role of the type III HD-Zip genes, previously known to specify lateral organ polarity, in stem cell termination. Both reduction in HD-Zip expression by over-expression of miR165/166 and mis-expression of HD-Zip genes by rendering them resistant to miR165/166 lead to prolonged floral stem cell activity, indicating that the expression of HD-Zip genes needs to be precisely controlled to achieve floral stem cell termination. We also show that both the ubiquitously expressed ARGONAUTE1 (AGO1) gene and its homolog AGO10, which exhibits highly restricted spatial expression patterns, are required to maintain the correct temporal program of floral stem cells. We provide evidence that AGO10, like AGO1, associates with miR172 and miR165/166 in vivo and exhibits "slicer" activity in vitro. Despite the common biological functions and similar biochemical activities, AGO1 and AGO10 exert different effects on miR165/166 in vivo. This work establishes a network of microRNAs and transcription factors governing the temporal program of floral stem cells and sheds light on the relationships among different AGO genes, which tend to exist in gene families in multicellular organisms.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Argonautas , Flores/citologia , Flores/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/fisiologia , Meristema/genética , Meristema/fisiologia , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Células-Tronco/citologia , Células-Tronco/fisiologia
13.
Clin Epidemiol Glob Health ; 19: 101209, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36619652

RESUMO

Aim: The study investigate the severity of perceived stress and wide domains of psychiatric symptoms reported on initial screening in hospitalized patients of COVID-19 with a second aim to determine the role of sociodemographic factors and coping styles in the hospitalized patients of COVID-19. Method: Total 224 patients of COVID-19 infection, hospitalized in various isolation facilities were assessed via web-based self-reported questionnaires on perceived stress scale, brief cope inventory, and DSM-5 crosscutting level-1 questionnaire. Results: Majority of the patients reported moderate level of stress followed by mild and severe. Depression and Anxiety symptoms were most common psychopathologies though the patients have reported greater severity in various domains of psychiatric symptoms. Coping styles explains most of variance (64.8%) of the perceived stress. Similarly total PSS scores, coping styles, COVID-19 status and sociodemographic factors contributed significantly to the variance of all psychiatric symptoms. Conclusion: Factors like female gender, being married, belonging to nuclear families, service class and urban domicile are the significant factors determining higher risk of stress and developing more psychopathologies. Furthermore, coping styles used by the patients have a greater moderating effect on mental health symptoms and their perceived stress which can be a major area for interventions to reduce the mental health morbidities.

14.
Front Plant Sci ; 14: 1133115, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968399

RESUMO

Chalk, an undesirable grain quality trait in rice, is primarily formed due to high temperatures during the grain-filling process. Owing to the disordered starch granule structure, air spaces and low amylose content, chalky grains are easily breakable during milling thereby lowering head rice recovery and its market price. Availability of multiple QTLs associated with grain chalkiness and associated attributes, provided us an opportunity to perform a meta-analysis and identify candidate genes and their alleles contributing to enhanced grain quality. From the 403 previously reported QTLs, 64 Meta-QTLs encompassing 5262 non-redundant genes were identified. MQTL analysis reduced the genetic and physical intervals and nearly 73% meta-QTLs were narrower than 5cM and 2Mb, revealing the hotspot genomic regions. By investigating expression profiles of 5262 genes in previously published datasets, 49 candidate genes were shortlisted on the basis of their differential regulation in at least two of the datasets. We identified non-synonymous allelic variations and haplotypes in 39 candidate genes across the 3K rice genome panel. Further, we phenotyped a subset panel of 60 rice accessions by exposing them to high temperature stress under natural field conditions over two Rabi cropping seasons. Haplo-pheno analysis uncovered haplotype combinations of two starch synthesis genes, GBSSI and SSIIa, significantly contributing towards the formation of grain chalk in rice. We, therefore, report not only markers and pre-breeding material, but also propose superior haplotype combinations which can be introduced using either marker-assisted breeding or CRISPR-Cas based prime editing to generate elite rice varieties with low grain chalkiness and high HRY traits.

15.
Nucleic Acids Res ; 38(17): 5844-50, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20448024

RESUMO

Plant microRNAs (miRNAs) and small interfering RNAs (siRNAs) bear a 2'-O-methyl group on the 3'-terminal nucleotide. This methyl group is post-synthetically added by the methyltransferase protein HEN1 and protects small RNAs from enzymatic activities that target the 3'-OH. A mutagenesis screen for suppressors of the partial loss-of-function hen1-2 allele in Arabidopsis identified second-site mutations that restore miRNA methylation. These mutations affect two subunits of the DNA-dependent RNA polymerase IV (Pol IV), which is essential for the biogenesis of 24 nt endogenous siRNAs. A mutation in RNA-dependent RNA polymerase 2, another essential gene for the biogenesis of endogenous 24-nt siRNAs, also rescued the defects in miRNA methylation of hen1-2, revealing a previously unsuspected, negative influence of siRNAs on HEN1-mediated miRNA methylation. In addition, our findings imply the existence of a negative modifier of HEN1 activity in the Columbia genetic background.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , RNA Polimerases Dirigidas por DNA/genética , MicroRNAs/metabolismo , RNA Interferente Pequeno/metabolismo , Alelos , Sequência de Aminoácidos , Arabidopsis/enzimologia , Proteínas de Arabidopsis/metabolismo , Fertilidade , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Dados de Sequência Molecular , Mutação , RNA Polimerase Dependente de RNA/genética , Supressão Genética
16.
Indian Heart J ; 64(4): 397-401, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22929824

RESUMO

Cardio Vascular disease (CVD) as well as depression are both highly prevalent disorders and both of them cause a significant decrease in quality of life and increase the economic burden for the patient. Depressed individuals are more likely to develop angina, fatal or non-fatal myocardial infarction, than those who are not depressed. Over the past decade, evidence has accumulated to suggest that depression may be a risk factor for cardiac mortality in patients with established coronary artery disease (CAD). The 'vicious cycle' linking CVD to major depression and depression to CVD, deserves greater attention from both cardio-vascular and psychiatric investigators.(1).


Assuntos
Doenças Cardiovasculares/epidemiologia , Depressão/epidemiologia , Síndrome Coronariana Aguda/epidemiologia , Síndrome Coronariana Aguda/psicologia , Doenças Cardiovasculares/psicologia , Comorbidade , Doença da Artéria Coronariana/epidemiologia , Doença da Artéria Coronariana/psicologia , Insuficiência Cardíaca/epidemiologia , Insuficiência Cardíaca/psicologia , Humanos , Prevalência
17.
J Appl Genet ; 63(3): 447-462, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35524104

RESUMO

Safflower (Carthamus tinctorius L.), an oilseed crop, is severely affected by Fusarium oxysporum f. sp. carthami (Foc), a fungus causing Fusarium wilt (FW) resulting in up to 80% yield loss. In the present study, we used a panel of 84 diverse accessions from the composite core collection to perform association mapping for FW-resistance. Hydroponics-based screening resulted in categorization of 84 accessions as 31 immune, 19 highly resistant, 9 moderately resistant, 4 moderately susceptible, and 21 highly susceptible. Genotyping with a combination of 155 AFLP and 144 SSR markers revealed substantial genetic differentiation and structure analysis identified three main subpopulations (K = 3) with nearly 35% of admixtures in the panel. Kinship analysis at individual and population level revealed absence of or weak relatedness between the accessions. Association mapping with General Linear Model and Mixed Linear Model identified 4 marker-trait associations (MTAs) significantly linked with the FW-resistance trait. Of these, 3 robust MTAs identified in both the models exhibited phenotypic variance ranging from 4.09 to 6.45%. Locus-128 showing a low P-value and high phenotypic variance was identified as a promising marker-trait association that will facilitate marker-assisted breeding for FW-resistance in safflower.


Assuntos
Carthamus tinctorius , Fusarium , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Carthamus tinctorius/genética , Fusarium/genética , Humanos , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
18.
Asian J Psychiatr ; 70: 103030, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35180464

RESUMO

BACKGROUND: Autism spectrum disorder is a neurodevelopmental disorder which is increasing across the globe. The disorder in children not only creates burden of care in caregivers but also leads to impaired quality of life of families. OBJECTIVE: To study the burden of care and quality of life in caregivers of children and adolescents with ASD. METHODOLOGY: Cross sectional study conducted in Child and Adolescent psychiatry outpatient services at a government centre in north India between September 2014 to August 2015. The sample consisted of 40 caregivers of children with Autism. Mean age of the caregiver's were 34.72 ± 6.32 years. Burden of care and quality of life were measured by Burden Assessment Schedule (BAS) and World Health Organization Quality of Life Instrument, Short Form (WHOQOL-BREF) questionnaire respectively. RESULTS: Mean burden of care on BAS was 71.73 ± 8.62 indicating quite a high degree of burden on the caregivers of ASD. Significantly higher burden was reported by caregivers belonging to low income families and caregivers of children in age group 6-12 years. A positive correlation was observed between severity of autism and burden of care in caregivers. The study also found that as the severity of symptom increases the QoL in caregiver worsens. CONCLUSION: Caregivers of children with ASD suffer from high burden of care and impaired QoL.


Assuntos
Transtorno do Espectro Autista , Qualidade de Vida , Adolescente , Adulto , Cuidadores , Criança , Estudos Transversais , Humanos , Inquéritos e Questionários
19.
Front Plant Sci ; 13: 773572, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371128

RESUMO

Nymphaea, commonly known as water lily, is the largest and most widely distributed genus in the order Nymphaeales. The importance of Nymphaea in wetland ecosystems and their increased vulnerability make them a great choice for conservation and management. In this work, we studied genetic diversity in a collection of 90 N. micrantha and 92 N. nouchali individuals from six different states of India, i.e., Assam, Manipur, Meghalaya, Maharashtra, Goa, and Kerala, using simple sequence repeat (SSR) markers developed by low throughput Illumina sequencing (10X coverage of genome) of N. micrantha. Nymphaea nouchali is native to India, whereas N. micrantha is suggested to be introduced to the country for its aesthetic and cultural values. The study revealed extensive polymorphism in N. nouchali, while in N. micrantha, no apparent genetic divergence was detected prompting us to investigate the reason(s) by studying the reproductive biology of the two species. The study revealed that N. micrantha predominantly reproduces asexually which has impacted the genetic diversity of the species to a great extent. This observation is of immense importance for a successful re-establishment of Nymphaea species during restoration programs of wetlands. The information generated on reproductive behaviors and their association with genotypic richness can help in strategizing genetic resource conservation, especially for species with limited distribution. The study has also generated 22,268 non-redundant microsatellite loci, out of which, 143 microsatellites were tested for polymorphism and polymorphic markers were tested for transferability in five other Nymphaea species, providing genomic resources for further studies on this important genus.

20.
Front Plant Sci ; 13: 985402, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311124

RESUMO

Coleoptile is the small conical, short-lived, sheath-like organ that safeguards the first leaf and shoot apex in cereals. It is also the first leaf-like organ to senesce that provides nutrition to the developing shoot and is, therefore, believed to play a crucial role in seedling establishment in rice and other grasses. Though histochemical studies have helped in understanding the pattern of cell death in senescing rice coleoptiles, genome-wide expression changes during coleoptile senescence have not yet been explored. With an aim to investigate the gene regulation underlying the coleoptile senescence (CS), we performed a combinatorial whole genome expression analysis by sequencing transcriptome and miRNAome of senescing coleoptiles. Transcriptome analysis revealed extensive reprogramming of 3439 genes belonging to several categories, the most prominent of which encoded for transporters, transcription factors (TFs), signaling components, cell wall organization enzymes, redox homeostasis, stress response and hormone metabolism. Small RNA sequencing identified 41 known and 21 novel miRNAs that were differentially expressed during CS. Comparison of gene expression and miRNA profiles generated for CS with publicly available leaf senescence (LS) datasets revealed that the two aging programs are remarkably distinct at molecular level in rice. Integration of expression data of transcriptome and miRNAome identified high confidence 140 miRNA-mRNA pairs forming 42 modules, thereby demonstrating multi-tiered regulation of CS. The present study has generated a comprehensive resource of the molecular networks that enrich our understanding of the fundamental pathways regulating coleoptile senescence in rice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA