Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Open Biol ; 14(1): 230279, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38228170

RESUMO

Mitochondria, classically known as the powerhouse of cells, are unique double membrane-bound multifaceted organelles carrying a genome. Mitochondrial content varies between cell types and precisely doubles within cells during each proliferating cycle. Mitochondrial content also increases to a variable degree during cell differentiation triggered after exit from the proliferating cycle. The mitochondrial content is primarily maintained by the regulation of mitochondrial biogenesis, while damaged mitochondria are eliminated from the cells by mitophagy. In any cell with a given mitochondrial content, the steady-state mitochondrial number and shape are determined by a balance between mitochondrial fission and fusion processes. The increase in mitochondrial content and alteration in mitochondrial fission and fusion are causatively linked with the process of differentiation. Here, we critically review the quantitative aspects in the detection methods of mitochondrial content and shape. Thereafter, we quantitatively link these mitochondrial properties in differentiating cells and highlight the implications of such quantitative link on stem cell functionality. Finally, we discuss an example of cell size regulation predicted from quantitative analysis of mitochondrial shape and content. To highlight the significance of quantitative analyses of these mitochondrial properties, we propose three independent rationale based hypotheses and the relevant experimental designs to test them.


Assuntos
Mitocôndrias , Dinâmica Mitocondrial , Mitocôndrias/metabolismo , Diferenciação Celular , Dinâmica Mitocondrial/fisiologia
2.
STAR Protoc ; 4(3): 102545, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37690024

RESUMO

Previous work has shown that mitochondria play a critical role in priming stem cells to self-renew and proliferate. Here, we describe a protocol for enriching and identifying the mitochondria-primed stem cells (mpSCs) for their characterization and applications. We describe steps for enriching mpSCs with the environmental carcinogen 2,3,7,8-tetrachlorodibenzo-p-dioxin in a skin keratinocyte lineage and for identifying mpSCs using single-cell transcriptomics and single-cell microscopy analyses of expression of relevant stem cell markers. For complete details on the use and execution of this protocol, please refer to Spurlock et al.1.


Assuntos
Carcinógenos , Pele , Humanos , Carcinógenos/toxicidade , Mitocôndrias , Análise de Célula Única , Células-Tronco
3.
Gene ; 840: 146745, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-35863714

RESUMO

The septation defect is one of the main categories of congenital heart disease (CHD). They can affect the septation of the atria leading to atrial septal defect (ASD), septation of ventricles leading to ventricular septal defect (VSD), and formation of the central part of the heart leading to atrioventricular septal defect (AVSD). Disruption of critical genetic factors involved in the proper development of the heart structure leads to CHD manifestation. Because of this, to identify the high-risk genes involved in common septal defects, a comprehensive search of the literature with the help of databases and the WebGestalt analysis tool was performed. The high-risk genes identified in the analysis were checked in 16 Indian whole-exome sequenced samples, including 13 VSD and three Tetralogy of Fallot for in silico validation. This data revealed three variations in GATA4, i.e., c.C1223A at exon 6: c.C602A and c.C1220A at exon 7; and one variation in MYH6, i.e., c.G3883C at exon 28 in two VSD cases. This study supports previously published studies that suggested GATA4 and MYH6 as the high-risk genes responsible for septal defects. Thus, this study contributes to a better understanding of the genes involved in heart development by identifying the high-risk genes and interacting proteins in the pathway.


Assuntos
Cardiopatias Congênitas , Comunicação Interatrial , Comunicação Interventricular , Defeitos dos Septos Cardíacos , Exoma , Cardiopatias Congênitas/genética , Defeitos dos Septos Cardíacos/genética , Comunicação Interatrial/genética , Comunicação Interventricular/genética , Comunicação Interventricular/metabolismo , Humanos
4.
Brain Behav Immun Health ; 15: 100269, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34589774

RESUMO

Gut-Brain Axis provides a bidirectional communicational route, an imbalance of which can have pathophysiological consequences. Differential gut microbiome studies have become a frontier in autism research, affecting 85% of autistic children. The present study aims to understand how gut microbiota of autism subjects differ from their neurotypical counterparts. This study would help to identify the abundance of bacterial signature species in autism and their associated metabolites. 16S rRNA metagenomic sequence datasets of 30 out of 206 autism subjects were selected from the American Gut Project Archive. First, the taxonomic assignment was inferred by similarity-based methods using the Quantitative Insights into Microbial Ecology (QIIME) toolkit. Next, species abundance was characterized, and a co-occurrence network was built to infer species interaction using measures of diversity. Thirdly, statistical parameters were incorporated to validate the findings. Finally, the identification of metabolites associated with these bacterial signature species connects with biological processes in the host through pathway analysis. Gut microbiome data revealed Akkermansia sp. and Faecalibacterium prausnitzii to be statistically lower in abundance in autistic children than their neurotypical peers with a five and two-fold decrease, respectively. While Prevotella sp. and Sutterella sp. showed a five and a two-fold increase in cases, respectively. The constructed pathway revealed succinate and butyrate as the significant metabolites for the bacterial signature species identified. The present study throws light on the role of mucosa-associated bacterial species: Veillonella sp., Prevotella sp., Akkermansia sp., Sutterella sp., Faecalibacterium prausnitzii, Lactobacillus sp., which can act as diagnostic criteria for detection of gut dysbiosis in autism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA