Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Med Genet ; 16: 70, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26316174

RESUMO

BACKGROUND: Bacterial meningitis (BM) is an infectious disease that results in high mortality and morbidity. Despite efficacious antibiotic therapy, neurological sequelae are often observed in patients after disease. Currently, the main challenge in BM treatment is to develop adjuvant therapies that reduce the occurrence of sequelae. In recent papers published by our group, we described the associations between the single nucleotide polymorphisms (SNPs) AADAT +401C > T, APEX1 Asn148Glu, OGG1 Ser326Cys and PARP1 Val762Ala and BM. In this study, we analyzed the associations between the SNPs TNF -308G > A, TNF -857C > T, IL-8 -251A > T and BM and investigated gene-gene interactions, including the SNPs that we published previously. METHODS: The study was conducted with 54 BM patients and 110 healthy volunteers (as the control group). The genotypes were investigated via primer-introduced restriction analysis-polymerase chain reaction (PIRA-PCR) or polymerase chain reaction-based restriction fragment length polymorphism (PCR-RFLP) analysis. Allelic and genotypic frequencies were also associated with cytokine and chemokine levels, as measured with the x-MAP method, and cell counts. We analyzed gene-gene interactions among SNPs using the generalized multifactor dimensionality reduction (GMDR) method. RESULTS: We did not find significant association between the SNPs TNF -857C > T and IL-8 -251A > T and the disease. However, a higher frequency of the variant allele TNF -308A was observed in the control group, associated with changes in cytokine levels compared to individuals with wild type genotypes, suggesting a possible protective role. In addition, combined inter-gene interaction analysis indicated a significant association between certain genotypes and BM, mainly involving the alleles APEX1 148Glu, IL8 -251 T and AADAT +401 T. These genotypic combinations were shown to affect cyto/chemokine levels and cell counts in CSF samples from BM patients. CONCLUSIONS: In conclusion, this study revealed a significant association between genetic variability and altered inflammatory responses, involving important pathways that are activated during BM. This knowledge may be useful for a better understanding of BM pathogenesis and the development of new therapeutic approaches.


Assuntos
Inflamação/genética , Interleucina-8/genética , Meningites Bacterianas/genética , Polimorfismo de Nucleotídeo Único/genética , Fator de Necrose Tumoral alfa/genética , Brasil , Feminino , Frequência do Gene , Humanos , Masculino , Razão de Chances , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Estatísticas não Paramétricas
2.
BMC Microbiol ; 15: 115, 2015 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-26048053

RESUMO

BACKGROUND: Violacein is a purple pigment from Chromobacterium violaceum that possesses diverse biological and pharmacological properties. Among these, pro-oxidant and antioxidant activities have been suggested. However, the cytotoxic mechanisms induced by violacein are poorly understood and the improvement in knowledge regarding these cell death mechanisms will be useful to develop new therapeutic approaches. Considering this, in our work, we investigated the pro-oxidant effects of violacein in non-tumor (CHO-K1 and MRC-5) and tumor (HeLa) cell lines, searching for a better understanding of reactive oxygen species (ROS) production and cell death induction. RESULTS: Cytotoxicity induced by violacein was observed in the three cell lines; however, MRC-5 and HeLa cells were shown to be more sensitive to violacein treatment. Although punctual alterations in the antioxidant apparatus and increase in oxidative stress biomarkers was observed in some violacein concentrations, no association was found between increased oxidative stress and induction of cell death. However, the increase of mitochondrial membrane potential was observed. CONCLUSIONS: In fact, the increase of mitochondrial membrane potential in MRC-5 and HeLa cells suggests that mitochondrial membrane hyperpolarization might be the main cause of cell death triggered by violacein.


Assuntos
Indóis/toxicidade , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Animais , Células CHO , Morte Celular , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cricetulus , Células HeLa , Humanos , Indóis/farmacologia
3.
Nucleic Acids Res ; 41(15): 7387-400, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23761445

RESUMO

Anopheles darlingi is the principal neotropical malaria vector, responsible for more than a million cases of malaria per year on the American continent. Anopheles darlingi diverged from the African and Asian malaria vectors ∼100 million years ago (mya) and successfully adapted to the New World environment. Here we present an annotated reference A. darlingi genome, sequenced from a wild population of males and females collected in the Brazilian Amazon. A total of 10 481 predicted protein-coding genes were annotated, 72% of which have their closest counterpart in Anopheles gambiae and 21% have highest similarity with other mosquito species. In spite of a long period of divergent evolution, conserved gene synteny was observed between A. darlingi and A. gambiae. More than 10 million single nucleotide polymorphisms and short indels with potential use as genetic markers were identified. Transposable elements correspond to 2.3% of the A. darlingi genome. Genes associated with hematophagy, immunity and insecticide resistance, directly involved in vector-human and vector-parasite interactions, were identified and discussed. This study represents the first effort to sequence the genome of a neotropical malaria vector, and opens a new window through which we can contemplate the evolutionary history of anopheline mosquitoes. It also provides valuable information that may lead to novel strategies to reduce malaria transmission on the South American continent. The A. darlingi genome is accessible at www.labinfo.lncc.br/index.php/anopheles-darlingi.


Assuntos
Anopheles/genética , Genoma de Inseto , Insetos Vetores/genética , Animais , Anopheles/classificação , Brasil , Cromossomos de Insetos/genética , Elementos de DNA Transponíveis , Evolução Molecular , Feminino , Variação Genética , Interações Hospedeiro-Parasita , Proteínas de Insetos/genética , Insetos Vetores/classificação , Resistência a Inseticidas , Inseticidas/farmacologia , Malária/parasitologia , Masculino , Anotação de Sequência Molecular , Filogenia , Sintenia , Transcriptoma
4.
Nutrients ; 16(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38474735

RESUMO

BACKGROUND: Obesity results from interactions between environmental factors, lifestyle, and genetics. In this scenario, nutritional genomics and nutrigenetic tests stand out, with the promise of helping patients avoid or treat obesity. This narrative review investigates whether nutrigenetic tests may help to prevent or treat obesity. Scientific studies in PubMed Science Direct were reviewed, focusing on using nutrigenetic tests in obesity. The work showed that few studies address the use of tools in obesity. However, most of the studies listed reported their beneficial effects in weight loss. Ethical conflicts were also discussed, as in most countries, there are no regulations to standardize these tools, and there needs to be more scientific knowledge for health professionals who interpret them. International Societies, such as the Academy of Nutrition and Dietetics and the Brazilian Association for the Study of Obesity and Metabolic Syndrome, do not recommend nutrigenetic tests to prevent or treat obesity, especially in isolation. Advancing nutrigenetics depends on strengthening three pillars: regulation between countries, scientific evidence with clinical validity, and professional training.


Assuntos
Dietética , Nutrigenômica , Humanos , Nutrigenômica/métodos , Estado Nutricional , Obesidade , Brasil
5.
Life Sci Alliance ; 7(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38262689

RESUMO

During the COVID-19 pandemic, RNA-seq datasets were produced to investigate the virus-host relationship. However, much of these data remains underexplored. To improve the search for molecular targets and biomarkers, we performed an integrated analysis of multiple RNA-seq datasets, expanding the cohort and including patients from different countries, encompassing severe and mild COVID-19 patients. Our analysis revealed that severe COVID-19 patients exhibit overexpression of genes coding for proteins of extracellular exosomes, endomembrane system, and neutrophil granules (e.g., S100A9, LY96, and RAB1B), which may play an essential role in the cellular response to infection. Concurrently, these patients exhibit down-regulation of genes encoding components of the T cell receptor complex and nucleolus, including TP53, IL2RB, and NCL Finally, SPI1 may emerge as a central transcriptional factor associated with the up-regulated genes, whereas TP53, MYC, and MAX were associated with the down-regulated genes during COVID-19. This study identified targets and transcriptional factors, lighting on the molecular pathophysiology of syndrome coronavirus 2 infection.


Assuntos
COVID-19 , Humanos , Pandemias , RNA-Seq , Membrana Celular , Nucléolo Celular , Fatores de Transcrição
6.
J Surg Oncol ; 106(4): 448-55, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22374853

RESUMO

BACKGROUND AND OBJECTIVES: One of the mechanisms proposed by which H. pylori causes gastric cancer (GC) is through DNA damage due to chronic inflammation. Genomic integrity is guaranteed by repair enzymes such as APE-1, OGG-1, and PARP-1. Host genetic polymorphisms associated with the bacterial strain may influence the ability to repair the damage, contributing to the development of H. pylori-associated GC. The aim of this study was to determine the association of the polymorphisms APE-1 (T2197G), OGG-1 (C1245G), and PARP-1 (A40676G) with H. pylori-genotype in 109 patients with GC. METHODS: Polymorphism was assessed by polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) and H. pylori detection/genotyping by PCR. RESULTS: In the intestinal subtype, PARP-1 wild-type was more frequent (P=0.001) in patients >50 years old. The repair enzymes genotypes analyzed in combination showed that the less pathogenic strains are associated with the APE-1 polymorphic allele and, unexpectedly, with PARP-1 wild-type, but this last one associated with APE-1 polymorphic allele or in older patients. CONCLUSIONS: Our results indicate the importance of H. pylori and APE-1 genotypes in the gastric carcinogenesis. Also, support the hypothesis of a decrease of PARP-1 wild-type activity in older individuals. Taken together these data may be an important clue to understand the role of low-virulence strains of H. pylori in gastric carcinogenesis and point the importance to analyze the polymorphisms as a group.


Assuntos
Enzimas Reparadoras do DNA/genética , Helicobacter pylori/genética , Polimorfismo Genético , Neoplasias Gástricas/etiologia , Idoso , DNA Glicosilases/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Genótipo , Helicobacter pylori/classificação , Humanos , Masculino , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/genética , Neoplasias Gástricas/microbiologia
7.
Front Immunol ; 13: 793096, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35296074

RESUMO

Apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1) is a multifunctional enzyme that is essential for maintaining cellular homeostasis. APE1 is the major apurinic/apyrimidinic endonuclease in the base excision repair pathway and acts as a redox-dependent regulator of several transcription factors, including NF-κB, AP-1, HIF-1α, and STAT3. These functions render APE1 vital to regulating cell signaling, senescence, and inflammatory pathways. In addition to regulating cytokine and chemokine expression through activation of redox sensitive transcription factors, APE1 participates in other critical processes in the immune response, including production of reactive oxygen species and class switch recombination. Furthermore, through participation in active chromatin demethylation, the repair function of APE1 also regulates transcription of some genes, including cytokines such as TNFα. The multiple functions of APE1 make it an essential regulator of the pathogenesis of several diseases, including cancer and neurological disorders. Therefore, APE1 inhibitors have therapeutic potential. APE1 is highly expressed in the central nervous system (CNS) and participates in tissue homeostasis, and its roles in neurodegenerative and neuroinflammatory diseases have been elucidated. This review discusses known roles of APE1 in innate and adaptive immunity, especially in the CNS, recent evidence of a role in the extracellular environment, and the therapeutic potential of APE1 inhibitors in infectious/immune diseases.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Neoplasias , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Endonucleases/metabolismo , Humanos , Imunidade , Inflamação , Neoplasias/metabolismo , Oxirredução
8.
BMC Med Genet ; 12: 51, 2011 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-21473761

RESUMO

BACKGROUND: The kynurenine (KYN) pathway has been shown to be altered in several diseases which compromise the central nervous system (CNS) including infectious diseases such as bacterial meningitis (BM). The aim of this study was to assess single nucleotide polymorphisms (SNPs) in four genes of KYN pathway in patients with meningitis and their correlation with markers of immune response in BM. METHODS: One hundred and one individuals were enrolled in this study to investigate SNPs in the following genes: indoleamine-2,3-dioxygenase (IDO1 gene), kynureninase (KYNU gene), kynurenine aminotransferase I (CCBL1 gene), and kynurenine aminotransferase II (AADAT gene). SNP analyses were performed by primer-introduced restriction analysis-PCR (PIRA-PCR) followed by RFLP. Cytokines were measured using multiplex bead assay while immunoglobulins (IG) by immunodiffusion plates and NF-kappaB and c-Jun by dot blot assay. RESULTS: The variant allele of SNP AADAT+401C/T showed prevalent frequency in patients with BM. A significant decrease (p < 0.05) in TNF-α, IL-1ß, IL-6, MIP-1αCCL3 and MIP-1ß/CCL4 levels was observed in BM patients homozygous (TT) to the SNP AADAT+401C/T. Furthermore, a significant (p < 0.05) decrease in cell count was observed in cerebrospinal fluid (CSF) from patients with TT genotype. In addition, an increase in the IgG level in adults (p < 0.05) was observed. The variant allele for KYNU+715G/A was found with low frequency in the groups, and the SNPs in IDO1+434T/G, KYNU+693G/A, CCBL1+164T/C, and AADAT+650C/T had no frequency in this population. CONCLUSIONS: This study is the first report of an association of SNP AADAT+401C/T with the host immune response to BM, suggesting that this SNP may affect the host ability in recruitment of leukocytes to the infection site. This finding may contribute to identifying potential targets for pharmacological intervention as adjuvant therapy for BM.


Assuntos
Meningites Bacterianas/enzimologia , Meningites Bacterianas/imunologia , Polimorfismo de Nucleotídeo Único , Transaminases/genética , Adolescente , Adulto , Alelos , Sequência de Bases , Estudos de Casos e Controles , Quimiocinas/líquido cefalorraquidiano , Citocinas/líquido cefalorraquidiano , Primers do DNA/genética , Feminino , Frequência do Gene , Humanos , Hidrolases/genética , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Masculino , Meningites Bacterianas/líquido cefalorraquidiano , Meningites Bacterianas/genética , Pessoa de Meia-Idade , Adulto Jovem
9.
Mutat Res ; 713(1-2): 39-47, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21651918

RESUMO

In vitro and in animal models, APE1, OGG1, and PARP-1 have been proposed as being involved with inflammatory response. In this work, we have investigated if the SNPs APE1 Asn148Glu, OGG1 Ser326Cys, and PARP-1 Val762Ala are associated to meningitis. The patient genotypes were investigated by PIRA-PCR or PCR-RFLP. DNA damages were detected in genomic DNA by Fpg treatment. IgG and IgA were measured from plasma and the cytokines and chemokines were measured from cerebrospinal fluid samples using Bio-Plex assays. A higher frequency (P<0.05) of APE1 Glu allele in bacterial meningitis (BM) and aseptic meningitis (AM) patients was observed. The genotypes Asn/Asn in control group and Asn/Glu in BM group was also higher. For the SNP OGG1 Ser326Cys, the genotype Cys/Cys was more frequent (P<0.05) in BM group. The frequency of PARP-1 Val/Val genotype was higher in control group (P<0.05). The occurrence of combined SNPs is significantly higher in BM patients, indicating that these SNPs may be associated to the disease. Increasing in sensitive sites to Fpg was observed in carriers of APE1 Glu allele or OGG1 Cys allele, suggesting that SNPs affect DNA repair activity. Alterations in IgG production were observed in the presence of SNPs APE1 Asn148Glu, OGG1 Ser326Cys or PARP-1 Val762Ala. Moreover, reduction in the levels of IL-6, IL-1Ra, MCP-1/CCL2 and IL-8/CXCL8 was observed in the presence of APE1 Glu allele in BM patients. In conclusion, we obtained indications of an effect of SNPs in DNA repair genes on the regulation of immune response in meningitis.


Assuntos
Reparo do DNA/genética , Meningite/genética , Meningite/imunologia , Polimorfismo de Nucleotídeo Único , Adolescente , Adulto , Dano ao DNA , Feminino , Genótipo , Humanos , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Imunomodulação , Masculino
10.
Front Cell Dev Biol ; 9: 731588, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34616737

RESUMO

The presence of oxidized DNA lesions, such as 7,8-dihydro-8-oxoguanine (8-oxoG) and apurinic/apyrimidinic sites (AP sites), has been described as epigenetic signals that are involved in gene expression control. In mammals, Apurinic-apyrimidinic endonuclease 1/Redox factor-1 (APE1/Ref-1) is the main AP endonuclease of the base excision repair (BER) pathway and is involved in active demethylation processes. In addition, APE1/Ref-1, through its redox function, regulates several transcriptional factors. However, the transcriptional control targets of each APE1 function are not completely known. In this study, a transcriptomic approach was used to investigate the effects of chemical inhibition of APE1/Ref-1 redox or DNA repair functions by E3330 or methoxyamine (MX) in an inflammatory cellular model. Under lipopolysaccharide (LPS) stimulation, both E3330 and MX reduced the expression of some cytokines and chemokines. Interestingly, E3330 treatment reduced cell viability after 48 h of the treatment. Genes related to inflammatory response and mitochondrial processes were downregulated in both treatments. In the E3330 treatment, RNA processing and ribosome biogenesis genes were downregulated, while they were upregulated in the MX treatment. Furthermore, in the E3330 treatment, the cellular stress response was the main upregulated process, while the cellular macromolecule metabolic process was observed in MX-upregulated genes. Nuclear respiratory factor 1 (NRF1) was predicted to be a master regulator of the downregulated genes in both treatments, while the ETS transcription factor ELK1 (ELK1) was predicted to be a master regulator only for E3330 treatment. Decreased expression of ELK1 and its target genes and a reduced 28S/18S ratio were observed, suggesting impaired rRNA processing. In addition, both redox and repair functions can affect the expression of NRF1 and GABPA target genes. The master regulators predicted for upregulated genes were YY1 and FLI1 for the E3330 and MX treatments, respectively. In summary, the chemical inhibition of APE1/Ref-1 affects gene expression regulated mainly by transcriptional factors of the ETS family, showing partial overlap of APE1 redox and DNA repair functions, suggesting that these activities are not entirely independent. This work provides a new perspective on the interaction between APE1 redox and DNA repair activity in inflammatory response modulation and transcription.

11.
Acta Trop ; 221: 106006, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34118207

RESUMO

Ocular toxoplasmosis (OT) is the most common form of posterior uveitis, and in some countries, it is the most frequent cause of visual impairment. Studies demonstrate that the polymorphism in genes involved with the immune response can be related both to the occurrence and to the recurrence of OT. Thus, the present study aimed to analyze the association between OT and the polymorphism of the APEX1 (rs1130409) and MyD88 (rs7744) genes. The studied sample consisted of 48 volunteers with OT and 96 asymptomatic volunteers, but positive for anti - T. gondii IgG (control group). Blood collection was performed for serological analysis (ELISA) and DNA extraction. Genotyping of the polymorphism was performed using real-time PCR. To analyze the association between gene polymorphism and OT, logistic regression was performed. The results showed no association between the MYD88 gene polymorphism and the development of OT. However, a significant association was found between OT and APEX1 gene polymorphism, indicating that individuals expressing polymorphic (GG) or heterozygous (GT) alleles are more likely to develop the disease (P-value = 0.02 and 0.03 respectively). These results suggest that APEX1 (rs1130409) polymorphism is a risk factor for the occurrence of ocular toxoplasmosis in the studied population.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Fator 88 de Diferenciação Mieloide/genética , Toxoplasmose Ocular , Alelos , Humanos , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Toxoplasma , Toxoplasmose Ocular/genética
12.
Sci Rep ; 10(1): 1340, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992807

RESUMO

Microorganisms represent the most abundant biomass on the planet; however, because of several cultivation technique limitations, most of this genetic patrimony has been inaccessible. Due to the advent of metagenomic methodologies, such limitations have been overcome. Prevailing over these limitations enabled the genetic pool of non-cultivable microorganisms to be exploited for improvements in the development of biotechnological products. By utilising a metagenomic approach, we identified a new gene related to biosurfactant production and hydrocarbon degradation. Environmental DNA was extracted from soil samples collected on the banks of the Jundiaí River (Natal, Brazil), and a metagenomic library was constructed. Functional screening identified the clone 3C6, which was positive for the biosurfactant protein and revealed an open reading frame (ORF) with high similarity to sequences encoding a hypothetical protein from species of the family Halobacteriaceae. This protein was purified and exhibited biosurfactant activity. Due to these properties, this protein was named metagenomic biosurfactant protein 1 (MBSP1). In addition, E. coli RosettaTM (DE3) strain cells transformed with the MBSP1 clone showed an increase in aliphatic hydrocarbon degradation. In this study, we described a single gene encoding a protein with marked tensoactive properties that can be produced in a host cell, such as Escherichia coli, without substrate dependence. Furthermore, MBSP1 has been demonstrated as the first protein with these characteristics described in the Archaea or Bacteria domains.


Assuntos
Proteínas de Bactérias/metabolismo , Halobacteriaceae/metabolismo , Metabolismo dos Lipídeos , Óleos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Halobacteriaceae/classificação , Halobacteriaceae/genética , Hidrocarbonetos/metabolismo , Fases de Leitura Aberta , Filogenia , Conformação Proteica , Relação Estrutura-Atividade , Tensoativos/metabolismo
13.
DNA Repair (Amst) ; 94: 102937, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32693352

RESUMO

Xeroderma pigmentosum complementation group A (XPA), is defective in xeroderma pigmentosum patients, causing pre-disposition to skin cancer and neurological abnormalities, which is not well understood. Here, we analyzed the XPA-deficient cells transcriptional profile under oxidative stress. The imbalance in of ubiquitin-proteasome system (UPS) gene expression was observed in XPA-deficient cells and the involvement of nuclear factor erythroid 2-related factor-2 (NFE2L2) was indicated. Co-immunoprecipitation assays showed the interaction between XPA, apurinic-apyrimidinic endonuclease 1 (APE1) and NFE2L2 proteins. Decreased NFE2L2 protein expression and proteasome activity was also observed in XPA-deficient cells. The data suggest the involvement of the growth arrest and DNA-damage-inducible beta (GADD45ß) in NFE2L2 functions. Similar results were obtained in xpa-1 (RNAi) Caenorhabditis elegans suggesting the conservation of XPA and NFE2L2 interactions. In conclusion, stress response activation occurs in XPA-deficient cells under oxidative stress; however, these cells fail to activate the UPS cytoprotective response, which may contribute to XPA patient's phenotypes.


Assuntos
Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteostase , Ubiquitina/metabolismo , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo , Células Cultivadas , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Regulação para Baixo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Proteína de Xeroderma Pigmentoso Grupo A/genética
15.
Mutat Res Rev Mutat Res ; 781: 30-52, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31416577

RESUMO

Berardinelli-Seip congenital lipodystrophy (BSCL) is a rare disease characterized by the near total absence of body fat at birth. BSCL etiology involves genetic variations in four different genes: AGPAT2, BSCL2, CAV1, and CAVIN1. The four different biochemical subtypes of the disease are distinguished depending on which gene is mutated. The diagnosis of lipodystrophy can be based on clinical criteria, but the gold standard remains genetic testing. Since many different mutations have already been correlated with the onset of the disease, the most indicative method is DNA sequencing. However, not all laboratories have the resources to perform sequencing. Thus, less expensive techniques that include narrow gene regions may be applied. In such cases, the target mutations to be tested must be carefully determined taking into account the frequency of the description of the mutations in the literature, the nationality of the patient, as well as their phenotype. This review considers the molecular basis of BSCL, including the manual count of the majority of mutations reported in the literature up to the year 2018. Ninety different genetic mutations in 332 cases were reported at different frequencies. Some mutations were distributed homogeneously and others were specific to geographic regions. Type 2 BSCL was mentioned most often in the literature (50.3% of the cases), followed by Type 1 (38.0%), Type 4 (10.2%), and Type 3 (1.5%). The mutations comprised frameshifts (34.4%), nonsense (26.6%), and missense (21.1%). The c.517dupA in the BSCL2 gene was the most frequent (13.3%), followed by c.589-2A>G in the AGPAT2 gene (11.5%), c.507_511delGTATC in the BSCL2 gene (9.7%), c.317-588del in the AGPAT2 gene (7.3%), and c.202C>T in the AGPAT2 gene (4.5%). This information should prove valuable for analysts in making decisions regarding the best therapeutic targets in a population-specific context, which will benefit patients and enable faster and less expensive treatment.


Assuntos
Lipodistrofia Generalizada Congênita/genética , Mutação/genética , Tecido Adiposo , Sequência de Aminoácidos , Animais , Sequência de Bases , Testes Genéticos/métodos , Humanos , Fenótipo
16.
Free Radic Biol Med ; 130: 8-22, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30366059

RESUMO

Oxidative stress generated during inflammation is associated with a wide range of pathologies. Resveratrol (RESV) displays anti-inflammatory and antioxidant activities, being a candidate for the development of adjuvant therapies for several inflammatory diseases. Despite this potential, the cellular responses induced by RESV are not well known. In this work, transcriptomic analysis was performed following lipopolysaccharide (LPS) stimulation of monocyte cultures in the presence of RESV. Induction of an inflammatory response was observed after LPS treatment and the addition of RESV led to decreases in expression of the inflammatory mediators, tumor necrosis factor-alpha (TNF-α), interleukin-8 (IL-8), and monocyte chemoattractant protein-1 (MCP-1), without cytotoxicity. RNA sequencing revealed 823 upregulated and 2098 downregulated genes (cutoff ≥2.0 or ≤-2.0) after RESV treatment. Gene ontology analysis showed that the upregulated genes were associated with metabolic processes and the cell cycle, consistent with normal cell growth and differentiation under an inflammatory stimulus. The downregulated genes were associated with inflammatory responses, gene expression, and protein modification. The prediction of master regulators using the iRegulon tool showed nuclear respiratory factor 1 (NRF1) and GA-binding protein alpha subunit (GABPA) as the main regulators of the downregulated genes. Using immunoprecipitation and protein expression assays, we observed that RESV was able to decrease protein acetylation patterns, such as acetylated apurinic/apyrimidinic endonuclease-1/reduction-oxidation factor 1 (APE1/Ref-1), and increase histone methylation. In addition, reductions in p65 (nuclear factor-kappa B (NF-κB) subunit) and lysine-specific histone demethylase-1 (LSD1) expression were observed. In conclusion, our data indicate that treatment with RESV caused significant changes in protein acetylation and methylation patterns, suggesting the induction of deacetylase and reduction of demethylase activities that mainly affect regulatory cascades mediated by NF-кB and Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling. NRF1 and GABPA seem to be the main regulators of the transcriptional profile observed after RESV treatment.


Assuntos
Anti-Inflamatórios/metabolismo , Antioxidantes/metabolismo , Inflamação/genética , Monócitos/imunologia , Resveratrol/metabolismo , Acetilação , Citocinas/metabolismo , Fator de Transcrição de Proteínas de Ligação GA/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Humanos , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/imunologia , NF-kappa B/metabolismo , Fator 1 Nuclear Respiratório/genética , Estresse Oxidativo , Análise de Sequência de RNA , Transdução de Sinais , Células U937
17.
J Toxicol Environ Health A ; 71(7): 439-44, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18306091

RESUMO

Several therapeutic properties have been described for Eugenia caryophyllata (clove). In the present study the infusion of E. caryophyllata was evaluated in a series of bacterial and cell-free assays in order to determine genotoxic potential. Negative results were obtained in the SOS chromotest and in the Salmonella reversion assay using strains TA97a, TA98, TA100, and TA102. However, in a forward mutagenesis assay an increase in mutagenesis and high cytotoxicity was observed with the CC104 mutMmutY strain, suggesting that oxidative DNA damage occurred. The treatment of plasmid with clove infusion showed that DNA strand breaks and sites recognized by formamidopyrimidine-DNA-glycosylase (FPG/MutM) were generated. Data suggest that the occurrence of oxidative DNA damage, with low mutagenic potential, may also be involved in the cytotoxicity attributed to clove infusion.


Assuntos
Bebidas/toxicidade , Dano ao DNA/efeitos dos fármacos , Extratos Vegetais/toxicidade , Syzygium/toxicidade , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Testes de Mutagenicidade/métodos , Mutagênicos/análise , Salmonella/efeitos dos fármacos , Salmonella/genética
18.
Int J Cell Biol ; 2018: 5207608, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30402103

RESUMO

Seipin is a nonenzymatic protein encoded by the BSCL2 gene. It is involved in lipodystrophy and seipinopathy diseases. Named in 2001, all seipin functions are still far from being understood. Therefore, we reviewed much of the research, trying to find a pattern that could explain commonly observed features of seipin expression disorders. Likewise, this review shows how this protein seems to have tissue-specific functions. In an integrative view, we conclude by proposing a theoretical model to explain how seipin might be involved in the triacylglycerol synthesis pathway.

19.
Environ Mol Mutagen ; 48(8): 672-81, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17722088

RESUMO

Cell-free and bacterial assays indicate that flavonoid-enriched fractions and the flavonoids of pepper tree stem bark from Schinus terebinthifolius Raddi have genotoxic rather than antigenotoxic properties. In the present report, we have examined the ability of flavonoid-enriched fractions to damage plasmid DNA and the repair pathways involved in the recognition of these DNA lesions. High concentrations of two flavonoid-enriched fractions were able to break phosphodiester bonds in DNA. In addition, studies using bacterial strains deficient in nucleotide excision repair and base excision repair (BER) enzymes indicated that the flavonoid-enriched fractions generated lesions that were substrates for enzymes belonging to the BER pathway. In addition, in vitro studies indicated that the DNA damage produced by the flavonoid-enriched fractions was also a substrate for exonuclease III and that the phosphodiester breakage was amplified by copper ions. These results indicate that flavonoids from the pepper tree (Schinus terebinthifolius, Raddi) generate lesions on DNA that are potential targets of FPG and MutY glycosylase from the BER pathway. Chromatographic and spectral analyses helped to support the hypothesis that the flavonoids of the Brazilian pepper tree bark are the main factors involved in the fraction's damage potential. The isolated flavonoids from Fraction II were also tested in vitro and support the oxidative damage potential of these flavonoids.


Assuntos
Dano ao DNA , Reparo do DNA/genética , Flavonoides/farmacologia , Caules de Planta/química , Cromatografia Líquida , Espectrometria de Massas por Ionização por Electrospray
20.
Diabetol Metab Syndr ; 9: 80, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29046728

RESUMO

BACKGROUND: Berardinelli-Seip Congenital Lipodystrophy (BSCL) is a rare disease characterized by the almost complete absence of adipose tissue. Although a large number of BSCL cases was previously identified in Rio Grande do Norte (RN), a state in Northeast Brazil, its prevalence in RN regions and municipalities remains unknown. The purpose of this study was to better characterize the prevalence of BSCL in RN. METHODS: A descriptive study was conducted using secondary data obtained from the Association of Parents and People with BSCL of RN to determine its prevalence. The patients' socio-demographic characteristics and geolocalization were analyzed. RESULTS: We estimated a total of 103 BSCL cases in RN, resulting in a prevalence of 3.23 per 100,000 people. The Central Potiguar mesoregion, Seridó territory, Carnaúba dos Dantas and Timbaúba dos Batistas municipalities had a much higher prevalence of BSCL, with 20.56, 20.66, 498.05 and 217.85 per 100,000 people, respectively. CONCLUSIONS: Together, our results showed that BSCL is highly prevalent in RN and confirmed that our state has one of the highest prevalences of this lipodystrophy worldwide. More studies are still needed to better estimate the prevalence and incidence of BSCL in RN as well as in other states in Brazil. Trial registration Study Number 31809314.0.0000.5568.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA