Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanotechnology ; 24(36): 365601, 2013 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-23942258

RESUMO

With the aim of preparing stable nanofluids for heat exchange applications and to study the effect of surfactant on the aggregation of nanoparticles and thermal diffusivity, stable silver colloids were synthesized in water by a green method, reducing AgNO3 with fructose in the presence of poly-vinylpyrollidone (PVP) of various molecular weights. A silver nanopowder was precipitated from the colloids and re-dispersed at 4 vol% in deionized water. The Ag colloids were characterized by UV-visible spectroscopy, combined dynamic light scattering and ζ-potential measurements, and laser flash thermal diffusivity. The Ag nanopowders were characterized by scanning electron microscopy and thermal gravimetric analysis. It was found that the molecular weight of PVP strongly affects the ζ-potential and the aggregation of nanoparticles, thereby affecting the thermal diffusivity of the obtained colloids. In particular, it was observed that on increasing the molecular weight of PVP the absolute value of the ζ-potential is reduced, leading to increased aggregation of nanoparticles. A clear relation was identified between thermal diffusivity and aggregation, showing higher thermal diffusivity for nanofluids having higher aggregation. A maximum improvement of thermal diffusivity by about 12% was found for nanofluids prepared with PVP having higher molecular weight.


Assuntos
Nanopartículas/química , Prata/química , Temperatura , Coloides/química , Difusão , Frutose/química , Hidrodinâmica , Nanopartículas/ultraestrutura , Tamanho da Partícula , Povidona/química , Espectrofotometria Ultravioleta , Eletricidade Estática , Termogravimetria
2.
Membranes (Basel) ; 12(7)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35877925

RESUMO

Some metals belonging to groups IV and V show a high permeability to hydrogen and have been studied as possible alternatives to palladium in membranes for hydrogen purification/separation in order to increase their sustainability and decrease their costs. However, to date, very few alloys among those metals have been investigated, and no membrane studies based on 4-5 element alloys with low or zero Pd content and quasi-amorphous structure have been reported so far. In this work, new membranes based on ZrVTi- and ZrVTiPd alloys were tested for the first time for this application. The unprecedented deposition of micrometric-based multilayers was performed via high-power impulse magnetron sputtering onto porous alumina substrates. Dense Pd/ZrxVyTizPdw/Pd multilayers were obtained. The composition of the alloys, morphology and structure, hydrogen permeance, selectivity, and resistance to embrittlement were tested and analyzed depending on the deposition conditions, and the membrane with the enhanced performance was tuned. The environmental impact of these membranes was also investigated to ascertain the sustainability of these alloys relative to more common Pd77Ag23 and V93Pd7 thin-film membranes using a life cycle assessment analysis. The results showed that the partial substitution of Pd can efficiently lead to a decrease in the environmental impacts of the membranes.

3.
Nanotechnology ; 21(6): 065707, 2010 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-20057019

RESUMO

The dehydrogenation kinetics of LiBH(4) dispersed on multi-walled carbon nanotubes (MWCNTs) by the solvent infiltration technique has been studied. Commercial MWCNTs were ball-milled for different milling times in order to increase the specific surface area (SSA) as measured by the BET technique. Thermal programmed desorption measurements have been performed using a Sievert's apparatus on samples with different SSA of MWCNTs and different LiBH(4) to MWCNT ratio. Pressure composition isotherms (PCI) have been obtained at different temperatures in order to estimate the DeltaH and DeltaS of dehydrogenation. It has been observed that the dispersion of LiBH(4) on MWCNTs leads to a lower dehydrogenation temperature compared to pure LiBH(4). Moreover, the dehydrogenation temperature further decreases with increasing MWCNT surface area. An interpretation of the kinetic effect is proposed.

5.
Nanomaterials (Basel) ; 10(11)2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33138159

RESUMO

Nowadays, the use of lasers has become commonplace in everyday life, and laser protection has become an important field of scientific investigation, as well as a security issue. In this context, optical limiters are receiving increasing attention. This work focuses on the identification of the significant parameters affecting optical limiting properties of aqueous suspensions of pristine single-wall carbon nanohorns. The study is carried out on the spectral range, spanning from ultraviolet to near-infrared (355, 532 and 1064 nm). Optical nonlinear properties are systematically investigated as a function of nanohorn morphology, concentration, dimensions of aggregates, sample preparation procedure, nanostructure oxidation and the presence and concentration of surfactants to identify the role of each parameter in the nonlinear optical behavior of colloids. The size and morphology of individual nanoparticles were identified to primarily determine optical limiting. A cluster size effect was also demonstrated, showing more effective optical limiting in larger aggregates. Most importantly, we describe an original approach to identify the dominant nonlinear mechanism. This method requires simple transmittance measurements and a fitting procedure. In our suspensions, nonlinearity was identified to be of electronic origin at a 532 nm wavelength, while at 355 nm, it was found in the generation of bubbles.

6.
J Colloid Interface Sci ; 514: 528-533, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29289735

RESUMO

In this work, powders of Single Wall Carbon Nanohorns (SWCNHs), a typical hydrophobic material, were oxidized with concentrated HNO3 with the aim of surface carboxylation and consequent improved hydrophilicity and dispersibility in polar solvents. Dynamic Light Scattering and ζ-potential measurements demonstrated that very stable colloidal suspensions of SWCNH in water were obtained in total absence of stabilizers. By properly optimizing the reaction parameters, the suspensions achieved stability even higher than colloids with similar composition but prepared with the use of surfactants. Surface damage and oxidation degree of SWCNHs were evaluated by SEM microscopy, Thermogravimetric Analysis, Residual Gas Analysis, XPS and UV-visible spectroscopy.

7.
ChemSusChem ; 5(12): 2451-9, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23019172

RESUMO

An extensive morphological and structural study of two bimetallic "core-shell" carbon nitride nano-electrocatalysts with active sites based on Pt and Ni or on Pt and Fe is reported. The core-shell electrocatalysts are obtained by the pyrolysis of a precursor obtained by decorating a support composed of conducting particles with a hybrid inorganic-organic material. The electrocatalysts were investigated by high-resolution TEM, powder X-ray diffraction, and µ-Raman spectroscopy. The morphological and structural information presented here provides 1) insight into the microscopic features, affecting the electrochemical performance of the electrocatalyst materials determined in both ex situ measurements and single-cell configurations; and 2) an opportunity to study the effect of the different precursor chemistries on the structure and morphology of the bimetallic core-shell carbon nitride nano-electrocatalysts.


Assuntos
Ferro/química , Nanopartículas Metálicas/química , Níquel/química , Nitrilas/síntese química , Platina/química , Catálise , Técnicas Eletroquímicas , Microscopia Eletrônica de Transmissão , Nitrilas/química , Análise Espectral Raman , Propriedades de Superfície , Difração de Raios X
8.
Nanoscale Res Lett ; 6(1): 300, 2011 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-21711817

RESUMO

In the recent years, great interest has been devoted to the unique properties of nanofluids. The dispersion process and the nanoparticle suspension stability have been found to be critical points in the development of these new fluids. For this reason, an experimental study on the stability of water-based dispersions containing different nanoparticles, i.e. single wall carbon nanohorns (SWCNHs), titanium dioxide (TiO2) and copper oxide (CuO), has been developed in this study. The aim of this study is to provide stable nanofluids for selecting suitable fluids with enhanced thermal characteristics. Different dispersion techniques were considered in this study, including sonication, ball milling and high-pressure homogenization. Both the dispersion process and the use of some dispersants were investigated as a function of the nanoparticle concentration. The high-pressure homogenization was found to be the best method, and the addition of n-dodecyl sulphate and polyethylene glycol as dispersants, respectively in SWCNHs-water and TiO2-water nanofluids, improved the nanofluid stability.

9.
Nanoscale Res Lett ; 6(1): 282, 2011 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-21711795

RESUMO

In the present work, we investigated the scattering and spectrally resolved absorption properties of nanofluids consisting in aqueous and glycol suspensions of single-wall carbon nanohorns. The characteristics of these nanofluids were evaluated in view of their use as sunlight absorber fluids in a solar device. The observed nanoparticle-induced differences in optical properties appeared promising, leading to a considerably higher sunlight absorption with respect to the pure base fluids. Scattered light was found to be not more than about 5% with respect to the total attenuation of light. Both these effects, together with the possible chemical functionalization of carbon nanohorns, make this new kind of nanofluids very interesting for increasing the overall efficiency of the sunlight exploiting device. PACS: 78.40.Ri, 78.35.+c, 78.67.Bf, 88.40.fh, 88.40.fr, 81.05.U.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA