Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Biol ; 21(12): e3002442, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38127837

RESUMO

Rodent tears contain social chemosignals with diverse effects, including blocking male aggression. Human tears also contain a chemosignal that lowers male testosterone, but its behavioral significance was unclear. Because reduced testosterone is associated with reduced aggression, we tested the hypothesis that human tears act like rodent tears to block male aggression. Using a standard behavioral paradigm, we found that sniffing emotional tears with no odor percept reduced human male aggression by 43.7%. To probe the peripheral brain substrates of this effect, we applied tears to 62 human olfactory receptors in vitro. We identified 4 receptors that responded in a dose-dependent manner to this stimulus. Finally, to probe the central brain substrates of this effect, we repeated the experiment concurrent with functional brain imaging. We found that sniffing tears increased functional connectivity between the neural substrates of olfaction and aggression, reducing overall levels of neural activity in the latter. Taken together, our results imply that like in rodents, a human tear-bound chemosignal lowers male aggression, a mechanism that likely relies on the structural and functional overlap in the brain substrates of olfaction and aggression. We suggest that tears are a mammalian-wide mechanism that provides a chemical blanket protecting against aggression.


Assuntos
Agressão , Olfato , Lágrimas , Feminino , Humanos , Masculino , Agressão/fisiologia , Encéfalo/fisiologia , Odorantes , Olfato/fisiologia , Testosterona/farmacologia , Lágrimas/química
2.
Plant Biotechnol J ; 20(9): 1651-1669, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35638340

RESUMO

Plants produce myriad aroma compounds-odorous molecules that are key factors in countless aspects of the plant's life cycle, including pollinator attraction and communication within and between plants. For humans, aroma compounds convey accurate information on food type, and are vital for assessing the environment. The phenylpropanoid pathway is the origin of notable aroma compounds, such as raspberry ketone and vanillin. In the last decade, great strides have been made in elucidating this pathway with the identification of numerous aroma-related biosynthetic enzymes and factors regulating metabolic shunts. These scientific achievements, together with public acknowledgment of aroma compounds' medicinal benefits and growing consumer demand for natural products, are driving the development of novel biological sources for wide-scale, eco-friendly, and inexpensive production. Microbes and plants that are readily amenable to metabolic engineering are garnering attention as suitable platforms for achieving this goal. In this review, we discuss the importance of aroma compounds from the perspectives of humans, pollinators and plant-plant interactions. Focusing on vanillin and raspberry ketone, which are of high interest to the industry, we present key knowledge on the biosynthesis and regulation of phenylalanine-derived aroma compounds, describe advances in the adoption of microbes and plants as platforms for their production, and propose routes for improvement.


Assuntos
Odorantes , Fenilalanina , Humanos , Engenharia Metabólica , Fenilalanina/metabolismo , Plantas/genética
3.
Nature ; 527(7578): 379-383, 2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-26560030

RESUMO

Cancer cells hijack and remodel existing metabolic pathways for their benefit. Argininosuccinate synthase (ASS1) is a urea cycle enzyme that is essential in the conversion of nitrogen from ammonia and aspartate to urea. A decrease in nitrogen flux through ASS1 in the liver causes the urea cycle disorder citrullinaemia. In contrast to the well-studied consequences of loss of ASS1 activity on ureagenesis, the purpose of its somatic silencing in multiple cancers is largely unknown. Here we show that decreased activity of ASS1 in cancers supports proliferation by facilitating pyrimidine synthesis via CAD (carbamoyl-phosphate synthase 2, aspartate transcarbamylase, and dihydroorotase complex) activation. Our studies were initiated by delineating the consequences of loss of ASS1 activity in humans with two types of citrullinaemia. We find that in citrullinaemia type I (CTLN I), which is caused by deficiency of ASS1, there is increased pyrimidine synthesis and proliferation compared with citrullinaemia type II (CTLN II), in which there is decreased substrate availability for ASS1 caused by deficiency of the aspartate transporter citrin. Building on these results, we demonstrate that ASS1 deficiency in cancer increases cytosolic aspartate levels, which increases CAD activation by upregulating its substrate availability and by increasing its phosphorylation by S6K1 through the mammalian target of rapamycin (mTOR) pathway. Decreasing CAD activity by blocking citrin, the mTOR signalling, or pyrimidine synthesis decreases proliferation and thus may serve as a therapeutic strategy in multiple cancers where ASS1 is downregulated. Our results demonstrate that ASS1 downregulation is a novel mechanism supporting cancerous proliferation, and they provide a metabolic link between the urea cycle enzymes and pyrimidine synthesis.


Assuntos
Argininossuccinato Sintase/deficiência , Ácido Aspártico/metabolismo , Neoplasias/metabolismo , Pirimidinas/biossíntese , Animais , Argininossuccinato Sintase/metabolismo , Aspartato Carbamoiltransferase/metabolismo , Proteínas de Ligação ao Cálcio/antagonistas & inibidores , Proteínas de Ligação ao Cálcio/metabolismo , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Citrulinemia/metabolismo , Citosol/metabolismo , Di-Hidro-Orotase/metabolismo , Regulação para Baixo , Ativação Enzimática , Humanos , Masculino , Camundongos , Camundongos SCID , Neoplasias/enzimologia , Neoplasias/patologia , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Transportadores de Ânions Orgânicos/metabolismo , Fosforilação , Serina-Treonina Quinases TOR/metabolismo
4.
Sci Adv ; 7(47): eabg1530, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34797713

RESUMO

In terrestrial mammals, body volatiles can effectively trigger or block conspecific aggression. Here, we tested whether hexadecanal (HEX), a human body volatile implicated as a mammalian-wide social chemosignal, affects human aggression. Using validated behavioral paradigms, we observed a marked dissociation: Sniffing HEX blocked aggression in men but triggered aggression in women. Next, using functional brain imaging, we uncovered a pattern of brain activity mirroring behavior: In both men and women, HEX increased activity in the left angular gyrus, an area implicated in perception of social cues. HEX then modulated functional connectivity between the angular gyrus and a brain network implicated in social appraisal (temporal pole) and aggressive execution (amygdala and orbitofrontal cortex) in a sex-dependent manner consistent with behavior: increasing connectivity in men but decreasing connectivity in women. These findings implicate sex-specific social chemosignaling at the mechanistic heart of human aggressive behavior.

5.
Oncogene ; 39(1): 164-175, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31462712

RESUMO

Citrin, encoded by SLC25A13 gene, is an inner mitochondrial transporter that is part of the malate-aspartate shuttle, which regulates the NAD+/NADH ratio between the cytosol and mitochondria. Citrullinemia type II (CTLN-II) is an inherited disorder caused by germline mutations in SLC25A13, manifesting clinically in growth failure that can be alleviated by dietary restriction of carbohydrates. The association of citrin with glycolysis and NAD+/NADH ratio led us to hypothesize that it may play a role in carcinogenesis. Indeed, we find that citrin is upregulated in multiple cancer types and is essential for supplementing NAD+ for glycolysis and NADH for oxidative phosphorylation. Consequently, citrin deficiency associates with autophagy, whereas its overexpression in cancer cells increases energy production and cancer invasion. Furthermore, based on the human deleterious mutations in citrin, we found a potential inhibitor of citrin that restricts cancerous phenotypes in cells. Collectively, our findings suggest that targeting citrin may be of benefit for cancer therapy.


Assuntos
Carcinogênese/genética , Mitocôndrias/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Neoplasias/genética , Carboidratos/genética , Citrulinemia/genética , Citrulinemia/metabolismo , Citosol/metabolismo , Citosol/patologia , Regulação Neoplásica da Expressão Gênica/genética , Mutação em Linhagem Germinativa/genética , Glutamatos/farmacologia , Ácido Glutâmico/análogos & derivados , Ácido Glutâmico/farmacologia , Glicólise/genética , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas de Transporte da Membrana Mitocondrial/antagonistas & inibidores , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fosforilação Oxidativa/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA