Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2311073, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566548

RESUMO

Immobilization of quantum dots (QDs) on fiber surfaces has emerged as a robust approach for preserving their functional characteristics while mitigating aggregation and instability issues. Despite the advancement, understanding the impacts of QDs on jet-fiber evolution during electrospinning, QDs-fiber interface, and composites functional behavior remains a knowledge gap. The study adopts a high-speed imaging methodology to capture the immobilization effects on the QDs-fiber matrix. In situ observations reveal irregular triangular branches within the QDs-fiber matrix, exhibiting distinctive rotations within a rapid timeframe of 0.00667 ms. The influence of FeQDs on Taylor cone dynamics and subsequent fiber branching velocities is elucidated. Synthesis phenomena are correlated with QD-fiber's morphology, crystallinity, and functional properties. PAN-FeQDs composite fibers substantially reduced (50-70%) nano-fibrillar length and width while their diameter expanded by 17%. A 30% enhancement in elastic modulus and reduction in adhesion force for PAN-FeQDs fibers is observed. These changes are attributed to chemical and physical intertwining between the FeQDs and the polymer matrix, bolstered by the shifts in the position of C≡N and C═C bonds. This study provides valuable insights into the quantum dot-fiber composites by comprehensively integrating and bridging jet-fiber transformation, fiber structure, nanomechanics, and surface chemistry.

2.
Molecules ; 27(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35011420

RESUMO

Polyphenols are a large family of natural compounds widely used in cosmetic products due to their antioxidant and anti-inflammatory beneficial properties and their ability to prevent UV radiation-induced oxidative stress. Since these compounds present chromophores and are applied directly to the skin, they can react with sunlight and exert phototoxic effects. The available scientific information on the phototoxic potential of these natural compounds is scarce, and thus the aim of this study was to evaluate the photoreactivity and phototoxicity of five phenolic antioxidants with documented use in cosmetic products. A standard ROS assay was validated and applied to screen the photoreactivity of the natural phenolic antioxidants caffeic acid, ferulic acid, p-coumaric acid, 3,4-dihydroxyphenylacetic acid (DOPAC), and rutin. The phototoxicity potential was determined by using a human keratinocyte cell line (HaCaT), based on the 3T3 Neutral Red Uptake phototoxicity test. Although all studied phenolic antioxidants absorbed UV/Vis radiation in the range of 290 to 700 nm, only DOPAC was able to generate singlet oxygen. The generation of reactive oxygen species is an early-stage chemical reaction as part of the phototoxicity mechanism. Yet, none of the studied compounds decreased the viability of keratinocytes after irradiation, leading to the conclusion that they do not have phototoxic potential. The data obtained with this work suggests that these compounds are safe when incorporated in cosmetic products.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Polifenóis/química , Polifenóis/farmacologia , Animais , Bioensaio/métodos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Dermatite Fototóxica , Humanos , Camundongos , Estrutura Molecular , Espécies Reativas de Oxigênio/metabolismo
3.
Molecules ; 24(23)2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31810314

RESUMO

Exogenous antioxidants may be beneficial therapeutic tools to tackle the oxidative damage in neurodegenerative diseases by regulation of the redox state that is critical for cell viability and organ function. Inspired by natural plant polyphenols, a series of cinnamic acid-based thiophenolic and phenolic compounds were synthesized and their antioxidant and neuroprotective properties were studied. In general, our results showed that the replacement of the hydroxyl group (OH) by a sulfhydryl group (SH) increased the radical scavenging activity and enhanced the reaction rate with 1,1-diphenyl-2-picrylhydrazyl radical (DPPH•) and galvinoxyl radical (GO•). These results correlated well with the lower oxidation potential (Ep) values of thiophenols. However, a lower peroxyl radical (ROO•) scavenging activity was observed for thiophenols in oxygen radical absorbance capacity (ORAC-FL) assay. Furthermore, the introduction of 5-methoxy and 5-phenyl groups in the aromatic ring of 4-thioferulic acid (TFA) 2 and ferulic acid (FA) 1 did not significantly improve their antioxidant activity, despite the slight decrease of Ep observed for compounds 5, 6, and 9. Concerning cinnamic acid amides, the antioxidant profile was similar to the parent compounds. None of the compounds under study presented significant cytotoxic effects in human differentiated neuroblastoma cells. Thiophenolic amide 3 stands out as the most promising thiophenol-based antioxidant, showing cellular neuroprotective effects against oxidative stress inducers (hydrogen peroxide and iron).


Assuntos
Descoberta de Drogas , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Fenômenos Químicos , Cinamatos/química , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Humanos , Estrutura Molecular , Oxirredução , Fenóis/química , Relação Estrutura-Atividade , Compostos de Sulfidrila/química
4.
ACS Appl Mater Interfaces ; 14(38): 42876-42886, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36107749

RESUMO

Nanometer- and submicrometer-sized fiber have been used as scaffolds for tissue engineering, because of their fundamental load-bearing properties in synergy with mechano-transduction. This study investigates a single biodegradable poly(lactic-co-glycolic acid) (PLGA) fiber's load-displacement behavior utilizing the nanoindentation technique coupled with a high-resolution in situ imaging system. It is demonstrated that a maximum force of ∼3 µN in the radial direction and displacement of at least 150% of fiber diameter should be applied to acquire the fiber's macroscopic mechanical properties for tissue engineering. The adhesion behavior of a single fiber is captured using a high-resolution camera. The digital image correlation (DIC) technique is adopted to quantify the adhesion force (∼25 µN) between the fiber and the tip. Adhesion force has also been quantified for the fiber after immersing in phosphate-buffered saline (PBS) to mimic the bioenvironment. A 4-fold increase in adhesion force after PBS treatment was observed due to water penetration and hydrolysis on the fiber's surface. A high similarity between mechanical properties of a single fiber and native tissues (elastic modulus of 10-25 kPa) and superior adhesion force (25-107.25 µN) was observed, which is excellent for promoting cell-matrix communication. Overall, this study examines the mechanics of a single fiber using innovative indentation and imaging processing techniques, disclosing its profound and striking roles in tissue engineering.


Assuntos
Ácido Poliglicólico , Engenharia Tecidual , Glicóis , Humanos , Ácido Láctico , Fosfatos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Aderências Teciduais , Alicerces Teciduais , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA