Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mutat ; 41(5): 884-905, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32027066

RESUMO

The most common genetic cause of neonatal diabetes and hyperinsulinism is pathogenic variants in ABCC8 and KCNJ11. These genes encode the subunits of the ß-cell ATP-sensitive potassium channel, a key component of the glucose-stimulated insulin secretion pathway. Mutations in the two genes cause dysregulated insulin secretion; inactivating mutations cause an oversecretion of insulin, leading to congenital hyperinsulinism, whereas activating mutations cause the opposing phenotype, diabetes. This review focuses on variants identified in ABCC8 and KCNJ11, the phenotypic spectrum and the treatment implications for individuals with pathogenic variants.


Assuntos
Hiperinsulinismo Congênito/genética , Diabetes Mellitus/genética , Células Secretoras de Insulina/metabolismo , Mutação , Canais de Potássio Corretores do Fluxo de Internalização/genética , Receptores de Sulfonilureias/genética , Hiperinsulinismo Congênito/diagnóstico , Diabetes Mellitus/diagnóstico , Mutação com Ganho de Função , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Recém-Nascido , Mutação com Perda de Função
2.
Biochem Soc Trans ; 47(6): 1843-1855, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31697318

RESUMO

It is accepted that insulin-secreting ß-cells release insulin in response to glucose even in the absence of functional ATP-sensitive K+ (KATP)-channels, which play a central role in a 'consensus model' of secretion broadly accepted and widely reproduced in textbooks. A major shortcoming of this consensus model is that it ignores any and all anionic mechanisms, known for more than 40 years, to modulate ß-cell electrical activity and therefore insulin secretion. It is now clear that, in addition to metabolically regulated KATP-channels, ß-cells are equipped with volume-regulated anion (Cl-) channels (VRAC) responsive to glucose concentrations in the range known to promote electrical activity and insulin secretion. In this context, the electrogenic efflux of Cl- through VRAC and other Cl- channels known to be expressed in ß-cells results in depolarization because of an outwardly directed Cl- gradient established, maintained and regulated by the balance between Cl- transporters and channels. This review will provide a succinct historical perspective on the development of a complex hypothesis: Cl- transporters and channels modulate insulin secretion in response to nutrients.


Assuntos
Cloretos/metabolismo , Células Secretoras de Insulina/fisiologia , Canais Iônicos/metabolismo , Modelos Biológicos , Animais , Humanos , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Transporte de Íons
4.
J Biol Chem ; 286(10): 8481-8492, 2011 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-21199866

RESUMO

The ATP-binding cassette (ABC) transporter ABCB6 is a mitochondrial porphyrin transporter that activates porphyrin biosynthesis. ABCB6 lacks a canonical mitochondrial targeting sequence but reportedly traffics to other cellular compartments such as the plasma membrane. How ABCB6 reaches these destinations is unknown. In this study, we show that endogenous ABCB6 is glycosylated in multiple cell types, indicating trafficking through the endoplasmic reticulum (ER), and has only one atypical site for glycosylation (NXC) in its amino terminus. ABCB6 remained glycosylated when the highly conserved cysteine (Cys-8) was substituted with serine to make a consensus site, NXS. However, this substitution blocked ER exit and produced ABCB6 degradation, which was mostly reversed by the proteasomal inhibitor MG132. The amino terminus of ABCB6 has an additional highly conserved ER luminal cysteine (Cys-26). When Cys-26 was mutated alone or in combination with Cys-8, it also resulted in instability and ER retention. Further analysis revealed that these two cysteines form a disulfide bond. We discovered that other ABC transporters with an amino terminus in the ER had similarly configured conserved cysteines. This analysis led to the discovery of a disease-causing mutation in the sulfonylurea receptor 1 (SUR1)/ABCC8 from a patient with hyperinsulinemic hypoglycemia. The mutant allele only contains a mutation in a conserved amino-terminal cysteine, producing SUR1 that fails to reach the cell surface. These results suggest that for ABC transporters the propensity to form a disulfide bond in the ER defines a unique checkpoint that determines whether a protein is ER-retained.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Dissulfetos/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas Mitocondriais/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Receptores de Droga/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Alelos , Substituição de Aminoácidos , Animais , Erros Inatos do Metabolismo dos Carboidratos/genética , Erros Inatos do Metabolismo dos Carboidratos/metabolismo , Inibidores de Cisteína Proteinase/farmacologia , Retículo Endoplasmático/genética , Glicosilação , Células HEK293 , Humanos , Hiperinsulinismo/genética , Hiperinsulinismo/metabolismo , Hipoglicemia/genética , Hipoglicemia/metabolismo , Células K562 , Leupeptinas/farmacologia , Camundongos , Proteínas Mitocondriais/genética , Mutação de Sentido Incorreto , Células NIH 3T3 , Canais de Potássio Corretores do Fluxo de Internalização/genética , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma , Estrutura Terciária de Proteína , Transporte Proteico/genética , Receptores de Droga/genética , Receptores de Sulfonilureias
5.
Endocr Rev ; 29(3): 265-91, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18436707

RESUMO

An explosion of work over the last decade has produced insight into the multiple hereditary causes of a nonimmunological form of diabetes diagnosed most frequently within the first 6 months of life. These studies are providing increased understanding of genes involved in the entire chain of steps that control glucose homeostasis. Neonatal diabetes is now understood to arise from mutations in genes that play critical roles in the development of the pancreas, of beta-cell apoptosis and insulin processing, as well as the regulation of insulin release. For the basic researcher, this work is providing novel tools to explore fundamental molecular and cellular processes. For the clinician, these studies underscore the need to identify the genetic cause underlying each case. It is increasingly clear that the prognosis, therapeutic approach, and genetic counseling a physician provides must be tailored to a specific gene in order to provide the best medical care.


Assuntos
Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/fisiopatologia , Doenças do Recém-Nascido/genética , Doenças do Recém-Nascido/fisiopatologia , Animais , Diabetes Mellitus Tipo 1/terapia , Humanos , Hiperglicemia/genética , Hiperglicemia/fisiopatologia , Hiperglicemia/terapia , Recém-Nascido , Doenças do Recém-Nascido/terapia
6.
Nat Med ; 11(3): 320-7, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15735652

RESUMO

Increased glucose production is a hallmark of type 2 diabetes and alterations in lipid metabolism have a causative role in its pathophysiology. Here we postulate that physiological increments in plasma fatty acids can be sensed within the hypothalamus and that this sensing is required to balance their direct stimulatory action on hepatic gluconeogenesis. In the presence of physiologically-relevant increases in the levels of plasma fatty acids, negating their central action on hepatic glucose fluxes through (i) inhibition of the hypothalamic esterification of fatty acids, (ii) genetic deletion (Sur1-deficient mice) of hypothalamic K(ATP) channels or pharmacological blockade (K(ATP) blocker) of their activation by fatty acids, or (iii) surgical resection of the hepatic branch of the vagus nerve led to a marked increase in liver glucose production. These findings indicate that a physiological elevation in circulating lipids can be sensed within the hypothalamus and that a defect in hypothalamic lipid sensing disrupts glucose homeostasis.


Assuntos
Diabetes Mellitus Tipo 2/fisiopatologia , Ácidos Graxos não Esterificados/sangue , Glucose/metabolismo , Hipotálamo/fisiologia , Fígado/metabolismo , Animais , Coenzima A Ligases/antagonistas & inibidores , Gorduras na Dieta/administração & dosagem , Emulsões Gordurosas Intravenosas/administração & dosagem , Emulsões Gordurosas Intravenosas/farmacologia , Glucose-6-Fosfatase/antagonistas & inibidores , Glucose-6-Fosfatase/metabolismo , Glibureto/farmacologia , Homeostase/fisiologia , Injeções Intraventriculares , Fígado/efeitos dos fármacos , Masculino , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Ratos , Ratos Sprague-Dawley , Triazenos/farmacologia , Vagotomia
7.
PLoS One ; 17(12): e0279560, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36580474

RESUMO

The risk of type-2 diabetes and cardiovascular disease is higher in subjects with metabolic syndrome, a cluster of clinical conditions characterized by obesity, impaired glucose metabolism, hyperinsulinemia, hyperlipidemia and hypertension. Diuretics are frequently used to treat hypertension in these patients, however, their use has long been associated with poor metabolic outcomes which cannot be fully explained by their diuretic effects. Here, we show that mice lacking the diuretic-sensitive Na+K+2Cl-cotransporter-1 Nkcc1 (Slc12a2) in insulin-secreting ß-cells of the pancreatic islet (Nkcc1ßKO) have reduced in vitro insulin responses to glucose. This is associated with islet hypoplasia at the expense of fewer and smaller ß-cells. Remarkably, Nkcc1ßKO mice excessively gain weight and progressive metabolic syndrome when fed a standard chow diet ad libitum. This is characterized by impaired hepatic insulin receptor activation and altered lipid metabolism. Indeed, overweight Nkcc1ßKO but not lean mice had fasting and fed hyperglycemia, hypertriglyceridemia and non-alcoholic steatohepatitis. Notably, fasting hyperinsulinemia was detected earlier than hyperglycemia, insulin resistance, glucose intolerance and increased hepatic de novo gluconeogenesis. Therefore, our data provide evidence supporting the novel hypothesis that primary ß-cell defects related to Nkcc1-regulated intracellular Cl-homeostasis and ß-cell growth can result in the development of metabolic syndrome shedding light into additional potential mechanisms whereby chronic diuretic use may have adverse effects on metabolic homeostasis in susceptible individuals.


Assuntos
Hiperglicemia , Hiperinsulinismo , Hipertensão , Resistência à Insulina , Células Secretoras de Insulina , Síndrome Metabólica , Camundongos , Animais , Síndrome Metabólica/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Hiperinsulinismo/metabolismo , Hiperglicemia/metabolismo , Diuréticos , Hipertensão/metabolismo
8.
Nature ; 434(7036): 1026-31, 2005 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-15846348

RESUMO

Obesity is the driving force behind the worldwide increase in the prevalence of type 2 diabetes mellitus. Hyperglycaemia is a hallmark of diabetes and is largely due to increased hepatic gluconeogenesis. The medial hypothalamus is a major integrator of nutritional and hormonal signals, which play pivotal roles not only in the regulation of energy balance but also in the modulation of liver glucose output. Bidirectional changes in hypothalamic insulin signalling therefore result in parallel changes in both energy balance and glucose metabolism. Here we show that activation of ATP-sensitive potassium (K(ATP)) channels in the mediobasal hypothalamus is sufficient to lower blood glucose levels through inhibition of hepatic gluconeogenesis. Finally, the infusion of a K(ATP) blocker within the mediobasal hypothalamus, or the surgical resection of the hepatic branch of the vagus nerve, negates the effects of central insulin and halves the effects of systemic insulin on hepatic glucose production. Consistent with these results, mice lacking the SUR1 subunit of the K(ATP) channel are resistant to the inhibitory action of insulin on gluconeogenesis. These findings suggest that activation of hypothalamic K(ATP) channels normally restrains hepatic gluconeogenesis, and that any alteration within this central nervous system/liver circuit can contribute to diabetic hyperglycaemia.


Assuntos
Trifosfato de Adenosina/metabolismo , Gluconeogênese , Glucose/biossíntese , Hipotálamo/metabolismo , Fígado/metabolismo , Canais de Potássio/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Glucose/metabolismo , Hiperinsulinismo/metabolismo , Hiperinsulinismo/fisiopatologia , Insulina/metabolismo , Fígado/inervação , Masculino , Camundongos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/deficiência , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Canais de Potássio/química , Canais de Potássio/genética , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Droga , Receptores de Sulfonilureias , Nervo Vago/fisiologia
9.
PLoS One ; 15(12): e0242749, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33264332

RESUMO

Cystic fibrosis (CF) is due to mutations in the CF-transmembrane conductance regulator (CFTR) and CF-related diabetes (CFRD) is its most common co-morbidity, affecting ~50% of all CF patients, significantly influencing pulmonary function and longevity. Yet, the complex pathogenesis of CFRD remains unclear. Two non-mutually exclusive underlying mechanisms have been proposed in CFRD: i) damage of the endocrine cells secondary to the severe exocrine pancreatic pathology and ii) intrinsic ß-cell impairment of the secretory response in combination with other factors. The later has proven difficult to determine due to low expression of CFTR in ß-cells, which results in the general perception that this Cl-channel does not participate in the modulation of insulin secretion or the development of CFRD. The objective of the present work is to demonstrate CFTR expression at the molecular and functional levels in insulin-secreting ß-cells in normal human islets, where it seems to play a role. Towards this end, we have used immunofluorescence confocal and immunofluorescence microscopy, immunohistochemistry, RT-qPCR, Western blotting, pharmacology, electrophysiology and insulin secretory studies in normal human, rat and mouse islets. Our results demonstrate heterogeneous CFTR expression in human, mouse and rat ß-cells and provide evidence that pharmacological inhibition of CFTR influences basal and stimulated insulin secretion in normal mouse islets but not in islets lacking this channel, despite being detected by electrophysiological means in ~30% of ß-cells. Therefore, our results demonstrate a potential role for CFTR in the pancreatic ß-cell secretory response suggesting that intrinsic ß-cell dysfunction may also participate in the pathogenesis of CFRD.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Secretoras de Insulina/metabolismo , Adulto , Idoso , Animais , Anticorpos/metabolismo , Antígenos/metabolismo , Linhagem Celular , Regulador de Condutância Transmembrana em Fibrose Cística/imunologia , Feminino , Humanos , Lactente , Secreção de Insulina , Masculino , Camundongos , Pessoa de Meia-Idade , Ratos , Reprodutibilidade dos Testes , Adulto Jovem
10.
N Engl J Med ; 355(5): 456-66, 2006 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-16885549

RESUMO

BACKGROUND: The ATP-sensitive potassium (K(ATP)) channel, composed of the beta-cell proteins sulfonylurea receptor (SUR1) and inward-rectifying potassium channel subunit Kir6.2, is a key regulator of insulin release. It is inhibited by the binding of adenine nucleotides to subunit Kir6.2, which closes the channel, and activated by nucleotide binding or hydrolysis on SUR1, which opens the channel. The balance of these opposing actions determines the low open-channel probability, P(O), which controls the excitability of pancreatic beta cells. We hypothesized that activating mutations in ABCC8, which encodes SUR1, cause neonatal diabetes. METHODS: We screened the 39 exons of ABCC8 in 34 patients with permanent or transient neonatal diabetes of unknown origin. We assayed the electrophysiologic activity of mutant and wild-type K(ATP) channels. RESULTS: We identified seven missense mutations in nine patients. Four mutations were familial and showed vertical transmission with neonatal and adult-onset diabetes; the remaining mutations were not transmitted and not found in more than 300 patients without diabetes or with early-onset diabetes of similar genetic background. Mutant channels in intact cells and in physiologic concentrations of magnesium ATP had a markedly higher P(O) than did wild-type channels. These overactive channels remained sensitive to sulfonylurea, and treatment with sulfonylureas resulted in euglycemia. CONCLUSIONS: Dominant mutations in ABCC8 accounted for 12 percent of cases of neonatal diabetes in the study group. Diabetes results from a newly discovered mechanism whereby the basal magnesium-nucleotide-dependent stimulatory action of SUR1 on the Kir pore is elevated and blockade by sulfonylureas is preserved.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Diabetes Mellitus/genética , Mutação de Sentido Incorreto , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio/genética , Receptores de Droga/genética , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/metabolismo , Peso ao Nascer , Deficiências do Desenvolvimento/complicações , Complicações do Diabetes , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/metabolismo , Feminino , Heterozigoto , Humanos , Hipoglicemiantes/uso terapêutico , Recém-Nascido , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Masculino , Linhagem , Canais de Potássio/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Receptores de Droga/antagonistas & inibidores , Receptores de Droga/metabolismo , Compostos de Sulfonilureia/uso terapêutico , Receptores de Sulfonilureias , Tolbutamida/farmacologia
12.
Sci Rep ; 7(1): 17231, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-29222447

RESUMO

Cystic fibrosis (CF)-related diabetes (CFRD) is thought to result from beta-cell injury due in part to pancreas exocrine damage and lipofibrosis. CFRD pancreata exhibit reduced islet density and altered cellular composition. To investigate a possible etiology, we tested the hypothesis that such changes are present in CF pancreata before the development of lipofibrosis. We evaluated pancreas and islet morphology in tissues from very young CF children (<4 years of age), and adult patients with CF and CFRD. The relative number of beta-cells in young CF tissues was reduced by 50% or more when compared to age-matched controls. Furthermore, young CF tissues displayed significantly smaller insulin-positive areas, lower proportion of beta-cells positive for the proliferation marker Ki67 or the ductal marker CK19 vs. control subjects, and islet inflammatory cell infiltrates, independently of the severity of the exocrine lesion and in the absence of amyloid deposits. CFRD pancreata exhibited greater islet injury with further reduction in islet density, decreased relative beta-cell number, and presence of amyloid deposits. Together, these results strongly suggest that an early deficiency in beta-cell number in infants with CF may contribute to the development of glucose intolerance in the CF pediatric population, and to CFRD, later in life.


Assuntos
Fibrose Cística/patologia , Complicações do Diabetes/patologia , Ilhotas Pancreáticas/patologia , Proliferação de Células , Pré-Escolar , Fibrose Cística/metabolismo , Complicações do Diabetes/metabolismo , Feminino , Teste de Tolerância a Glucose , Humanos , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Masculino , Pâncreas Exócrino/metabolismo , Pâncreas Exócrino/patologia
13.
Sci Rep ; 7(1): 1732, 2017 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-28496181

RESUMO

Intracellular chloride concentration ([Cl-]i) in pancreatic ß-cells is kept above electrochemical equilibrium due to the predominant functional presence of Cl- loaders such as the Na+K+2Cl- co-transporter 1 (Slc12a2) over Cl-extruders of unidentified nature. Using molecular cloning, RT-PCR, Western blotting, immunolocalization and in vitro functional assays, we establish that the "neuron-specific" K+Cl- co-transporter 2 (KCC2, Slc12a5) is expressed in several endocrine cells of the pancreatic islet, including glucagon secreting α-cells, but particularly in insulin-secreting ß-cells, where we provide evidence for its role in the insulin secretory response. Three KCC2 splice variants were identified: the formerly described KCC2a and KCC2b along with a novel one lacking exon 25 (KCC2a-S25). This new variant is undetectable in brain or spinal cord, the only and most abundant known sources of KCC2. Inhibition of KCC2 activity in clonal MIN6 ß-cells increases basal and glucose-stimulated insulin secretion and Ca2+ uptake in the presence of glibenclamide, an inhibitor of the ATP-dependent potassium (KATP)-channels, thus suggesting a possible mechanism underlying KCC2-dependent insulin release. We propose that the long-time considered "neuron-specific" KCC2 co-transporter is expressed in pancreatic islet ß-cells where it modulates Ca2+-dependent insulin secretion.


Assuntos
Secreção de Insulina , Neurônios/metabolismo , Simportadores/metabolismo , Processamento Alternativo/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Cálcio/metabolismo , Linhagem Celular , Glucose/farmacologia , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Canais KATP/metabolismo , Camundongos , Piridazinas , Simportadores/química , Simportadores/genética , Tiazóis , Cotransportadores de K e Cl-
14.
Diabetes ; 54(10): 2946-51, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16186397

RESUMO

The mechanisms involved in the release of glucagon in response to hypoglycemia are unclear. Proposed mechanisms include the activation of the autonomic nervous system via glucose-sensing neurons in the central nervous system, via the regulation of glucagon secretion by intra-islet insulin and zinc concentrations, or via direct ionic control, all mechanisms that involve high-affinity sulfonylurea receptor/inwardly rectifying potassium channel-type ATP-sensitive K(+) channels. Patients with congenital hyperinsulinism provide a unique physiological model to understand glucagon regulation. In this study, we compare serum glucagon responses to hyperinsulinemic hypoglycemia versus nonhyperinsulinemic hypoglycemia. In the patient group (n = 20), the mean serum glucagon value during hyperinsulinemic hypoglycemia was 17.6 +/- 5.7 ng/l compared with 59.4 +/- 7.8 ng/l in the control group (n = 15) with nonhyperinsulinemic hypoglycemia (P < 0.01). There was no difference between the serum glucagon responses in children with diffuse, focal, and diazoxide-responsive forms of hyperinsulinism. The mean serum epinephrine and norepinephrine concentrations in the hyperinsulinemic group were 2,779 +/- 431 pmol/l and 2.9 +/- 0.7 nmol/l and appropriately rose despite the blunted glucagon response. In conclusion, the loss of ATP-sensitive K(+) channels and or elevated intraislet insulin cannot explain the blunted glucagon release in all patients with congenital hyperinsulinism. Other possible mechanisms such as the suppressive effect of prolonged hyperinsulinemia on alpha-cell secretion should be considered.


Assuntos
Glucagon/sangue , Homeostase , Hormônios/sangue , Hiperglicemia/sangue , Hiperinsulinismo/congênito , Transportadores de Cassetes de Ligação de ATP/genética , Trifosfato de Adenosina/farmacologia , Pré-Escolar , Diazóxido/uso terapêutico , Epinefrina/sangue , Ácidos Graxos não Esterificados/sangue , Feminino , Humanos , Hiperinsulinismo/sangue , Hiperinsulinismo/genética , Lactente , Insulina/análise , Insulina/sangue , Ilhotas Pancreáticas/química , Corpos Cetônicos/sangue , Masculino , Mutação , Norepinefrina/sangue , Canais de Potássio/genética , Canais de Potássio/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/genética , Receptores de Droga/genética , Receptores de Sulfonilureias
15.
Endocrinology ; 146(12): 5514-21, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16123162

RESUMO

Glucagon is a potent counterregulatory hormone that opposes the action of insulin in controlling glycemia. The cellular mechanisms by which pancreatic alpha-cell glucagon secretion occurs in response to hypoglycemia are poorly known. SUR1/K(IR)6.2-type ATP-sensitive K(+) (K(ATP)) channels have been implicated in the glucagon counterregulatory response at central and peripheral levels, but their role is not well understood. In this study, we examined hypoglycemia-induced glucagon secretion in vitro in isolated islets and in vivo using Sur1KO mice lacking neuroendocrine-type K(ATP) channels and paired wild-type (WT) controls. Sur1KO mice fed ad libitum have normal glucagon levels and mobilize hepatic glycogen in response to exogenous glucagon but exhibit a blunted glucagon response to insulin-induced hypoglycemia. Glucagon release from Sur1KO and WT islets is increased at 2.8 mmol/liter glucose and suppressed by increasing glucose concentrations. WT islets increase glucagon secretion approximately 20-fold when challenged with 0.1 mmol/liter glucose vs. approximately 2.7-fold for Sur1KO islets. Glucagon release requires Ca(2+) and is inhibited by nifedipine. Consistent with a regulatory interaction between K(ATP) channels and intra-islet zinc-insulin, WT islets exhibit an inverse correlation between beta-cell secretion and glucagon release. Glibenclamide stimulated insulin secretion and reduced glucagon release in WT islets but was without effect on secretion from Sur1KO islets. The results indicate that loss of alpha-cell K(ATP) channels uncouples glucagon release from inhibition by beta-cells and reveals a role for K(ATP) channels in the regulation of glucagon release by low glucose.


Assuntos
Trifosfato de Adenosina/metabolismo , Glucagon/metabolismo , Hipoglicemia/metabolismo , Canais de Potássio/metabolismo , Transportadores de Cassetes de Ligação de ATP , Animais , Glicemia/metabolismo , Glucagon/farmacologia , Células Secretoras de Glucagon/metabolismo , Hipoglicemia/induzido quimicamente , Hipoglicemiantes , Técnicas In Vitro , Insulina/metabolismo , Secreção de Insulina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas à Resistência a Múltiplos Medicamentos/deficiência , Canais de Potássio Corretores do Fluxo de Internalização , Receptores de Droga , Receptores de Sulfonilureias
16.
Diabetes ; 53 Suppl 3: S104-12, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15561897

RESUMO

Advances in understanding the overall structural features of inward rectifiers and ATP-binding cassette (ABC) transporters are providing novel insight into the architecture of ATP-sensitive K+ channels (KATP channels) (KIR6.0/SUR)4. The structure of the K(IR) pore has been modeled on bacterial K+ channels, while the lipid-A exporter, MsbA, provides a template for the MDR-like core of sulfonylurea receptor (SUR)-1. TMD0, an NH2-terminal bundle of five alpha-helices found in SURs, binds to and activates KIR6.0. The adjacent cytoplasmic L0 linker serves a dual function, acting as a tether to link the MDR-like core to the KIR6.2/TMD0 complex and exerting bidirectional control over channel gating via interactions with the NH2-terminus of the KIR. Homology modeling of the SUR1 core offers the possibility of defining the glibenclamide/sulfonylurea binding pocket. Consistent with 30-year-old studies on the pharmacology of hypoglycemic agents, the pocket is bipartite. Elements of the COOH-terminal half of the core recognize a hydrophobic group in glibenclamide, adjacent to the sulfonylurea moiety, to provide selectivity for SUR1, while the benzamido group appears to be in proximity to L0 and the KIR NH2-terminus.


Assuntos
Trifosfato de Adenosina/fisiologia , Canais de Potássio/química , Canais de Potássio/fisiologia , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Humanos , Hipoglicemiantes/farmacologia , Modelos Moleculares , Canais de Potássio/efeitos dos fármacos , Canais de Potássio Corretores do Fluxo de Internalização/química , Canais de Potássio Corretores do Fluxo de Internalização/efeitos dos fármacos , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Conformação Proteica
17.
Diabetes ; 51(12): 3440-9, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12453898

RESUMO

Whereas the loss of ATP-sensitive K(+) channel (K(ATP) channel) activity in human pancreatic beta-cells causes severe hypoglycemia in certain forms of hyperinsulinemic hypoglycemia, similar channel loss in sulfonylurea receptor-1 (SUR1) and Kir6.2 null mice yields a milder phenotype that is characterized by normoglycemia, unless the animals are stressed. While investigating potential compensatory mechanisms, we found that incretins, specifically glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP), can increase the cAMP content of Sur1KO islets but do not potentiate glucose-stimulated insulin release. This impairment is secondary to a restriction in the ability of Sur1KO beta-cells to sense cAMP correctly. Potentiation does not appear to require cAMP-activated protein kinase (PKA) because H-89 (N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide) and KT5720, inhibitors of PKA, do not affect stimulation by GLP-1, GIP, or exendin-4 in wild-type islets, although they block phosphorylation of cAMP-response element-binding protein. The impaired incretin response in Sur1KO islets is specific; the stimulation of insulin release by other modulators, including mastoparan and activators of protein kinase C, is conserved. The results suggest that the defect responsible for the loss of cAMP-induced potentiation of insulin secretion is PKA independent. We hypothesize that a reduced release of insulin in response to incretins may contribute to the unexpected normoglycemic phenotype of Sur1KO mice versus the pronounced hypoglycemia seen in neonates with loss of K(ATP) channel activity.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Carbazóis , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , AMP Cíclico/fisiologia , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização , Canais de Potássio/fisiologia , Receptores de Droga/fisiologia , Sulfonamidas , Animais , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ativação Enzimática/fisiologia , Inibidores Enzimáticos/farmacologia , Glucagon , Peptídeo 1 Semelhante ao Glucagon , Peptídeos Semelhantes ao Glucagon , Glucose/farmacologia , Indóis/farmacologia , Secreção de Insulina , Isoquinolinas/farmacologia , Camundongos , Camundongos Knockout/genética , Fragmentos de Peptídeos/fisiologia , Canais de Potássio/deficiência , Canais de Potássio/genética , Proteína Quinase C/metabolismo , Pirróis/farmacologia , Receptores de Droga/deficiência , Receptores de Droga/genética , Valores de Referência , Receptores de Sulfonilureias
18.
Diabetes ; 52(9): 2403-10, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12941782

RESUMO

Recessive mutations of sulfonylurea receptor 1 (SUR1) and potassium inward rectifier 6.2 (Kir6.2), the two adjacent genes on chromosome 11p that comprise the beta-cell plasma membrane ATP-sensitive K(+) (K(ATP)) channels, are responsible for the most common form of congenital hyperinsulinism in children. The present study was undertaken to identify the genetic defect in a family with dominantly inherited hyperinsulinism affecting five individuals in three generations. Clinical tests were carried out in three of the patients using acute insulin responses (AIRs) to intravenous stimuli to localize the site of defect in insulin regulation. The affected individuals showed abnormal positive calcium AIR, normal negative leucine AIR, subnormal positive glucose AIR, and impaired tolbutamide AIR. This AIR pattern suggested a K(ATP) channel defect because it resembled that seen in children with recessive hyperinsulinism due to two common SUR1 mutations, g3992-9a and delPhe1388. Genetic linkage to the K(ATP) locus was established using intragenic polymorphisms. Mutation analysis identified a novel trinucleotide deletion in SUR1 exon 34 that results in the loss of serine 1387. Studies of delSer1387 in COSm6 cells confirmed that the expressed mutant protein assembles with Kir6.2 and trafficks to the plasma membrane, but it had no (86)Rb efflux ion transport activity. These results indicate that hyperinsulinism in this family is caused by a SUR1 mutation that is expressed dominantly rather than recessively.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Hiperinsulinismo/genética , Mutação Puntual , Canais de Potássio Corretores do Fluxo de Internalização , Canais de Potássio/genética , Receptores de Droga/genética , Adulto , Saúde da Família , Feminino , Expressão Gênica , Genes Dominantes , Haplótipos , Humanos , Hiperinsulinismo/congênito , Lactente , Recém-Nascido , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Masculino , Linhagem , Polimorfismo Genético , Receptores de Sulfonilureias
19.
FEBS Lett ; 579(7): 1602-6, 2005 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-15757648

RESUMO

To explore how the sulfonylurea receptor (SUR1) is involved in docking and fusion of insulin granules, dynamic motion of single insulin secretory granules near the plasma membrane was examined in SUR1 knock-out (Sur1KO) beta-cells by total internal reflection fluorescence microscopy. Sur1KO beta-cells exhibited a marked reduction in the number of fusion events from previously docked granules. However, the number of docked granules declined during stimulation as a consequence of the release of docked granules into the cytoplasm vs. fusion with the plasma membrane. Thus, the impaired docking and fusion results in decreased insulin exocytosis from Sur1KO beta-cells.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Exocitose , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Vesículas Secretórias/metabolismo , Animais , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Insulina/análise , Secreção de Insulina , Ilhotas Pancreáticas/ultraestrutura , Camundongos , Camundongos Knockout , Microscopia de Fluorescência , Canais de Potássio Corretores do Fluxo de Internalização , Receptores de Droga , Vesículas Secretórias/química , Vesículas Secretórias/genética , Receptores de Sulfonilureias
20.
Mol Endocrinol ; 16(5): 1097-107, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11981044

RESUMO

The sulfonylurea receptor 1 (SUR1) plays a key role in regulation of insulin secretion in pancreatic beta-cells. In this study we investigated the mechanism for tissue-specific expression of the SUR1 gene. A -138/-20 fragment exhibited basal promoter activity while the -660/-20 fragment contained a regulatory element for tissue-specific expression of the mouse SUR1 gene. A pancreatic beta-cell-specific transcription factor, BETA2 (beta-cell E box transcription factor)/NeuroD, enhanced the promoter activity of the -660/-20 fragment in cooperation with E47. Coexpression of a dominant negative mutant of BETA2/NeuroD, BETA2(1-233), repressed the promoter activity of the -660/-20 fragment. BETA2/NeuroD bound specifically to the E3 element located at -141. The E3 sequence in a heterologous context conferred transactivation by BETA2/NeuroD in HeLa and HIT cells. Mutation of E3 eliminated the stimulatory effect of BETA2/NeuroD. Unlike BETA2/NeuroD, neurogenin 3 (ngn3) could not activate the E3 element in HeLa cells. Overexpression of ngn3 concomitantly increased expression of BETA2/NeuroD and SUR1 in HIT cells but not in HeLa cells. These results indicate that BETA2/NeuroD induces tissue-specific expression of the SUR1 gene through the E3 element. These results also suggest that E3 is specific for BETA2/NeuroD, and the stimulatory effect of ngn3 in HIT cells may require factors specifically expressed in HIT cells.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Proteínas de Ligação a DNA/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização , Canais de Potássio/genética , Receptores de Droga/genética , Transativadores/farmacologia , Ativação Transcricional , Animais , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Sítios de Ligação , Proteínas de Ligação a DNA/metabolismo , Expressão Gênica , Células HeLa , Humanos , Insulinoma , Camundongos , Dados de Sequência Molecular , Mutagênese , Neoplasias Pancreáticas , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Canais de Potássio/metabolismo , Regiões Promotoras Genéticas , Ratos , Receptores de Droga/metabolismo , Sequências Reguladoras de Ácido Nucleico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Receptores de Sulfonilureias , Transativadores/metabolismo , Transfecção , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA