Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecology ; 104(8): e4109, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37232406

RESUMO

Climate change alters mean global surface temperatures, precipitation regimes, and atmospheric moisture. Resultant drought affects the composition and diversity of terrestrial ecosystems worldwide. To date, there have been no assessments of the combined impacts of reduced precipitation and atmospheric drying on functional trait distributions of any species in an outdoor experiment. Here, we examined whether soil and atmospheric drought affected the functional traits of a focal grass species (Poa secunda) growing in monoculture and eight-species grass communities in outdoor mesocosms. We focused on specific leaf area (SLA), leaf area, stomatal density, root:shoot ratio, and fine root:coarse root ratio responses. Leaf area and overall growth were reduced with soil drying. Root:shoot ratio only increased for P. secunda growing in monoculture under combined atmospheric and soil drought. Plant energy allocation strategy (measured using principal components) differed when P. secunda was grown in combined soil and atmospheric drought conditions compared with soil drought alone. Given a lack of outdoor manipulations of this kind, our results emphasize the importance of atmospheric drying on functional trait responses more broadly. We suggest that drought methods focused purely on soil water inputs may be imprecisely predicting drought effects on other terrestrial organisms as well (other plants, arthropods, and higher trophic levels).


Assuntos
Ecossistema , Solo , Secas , Plantas , Folhas de Planta/fisiologia
2.
Annu Rev Phytopathol ; 60: 283-305, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36027939

RESUMO

Our understanding of the ecological interactions between plant viruses, their insect vectors, and their host plants has increased rapidly over the past decade. The suite of viruses known collectively as the yellow dwarf viruses infect an extensive range of cultivated and noncultivated grasses worldwide and is one of the best-studied plant virus systems. The yellow dwarf viruses are ubiquitous in cereal crops, where they can significantly limit yields, and there is growing recognition that they are also ubiquitous in grassland ecosystems, where they can influence community dynamics. Here, we discuss recent research that has explored (a) the extent and impact of yellow dwarf viruses in a diversity of plant communities, (b) the role of vector behavior in virus transmission, and (c) the prospects for impacts of climate change-including rising temperatures, drought, and elevated CO2-on the epidemiology of yellow dwarf viruses.


Assuntos
Afídeos , Luteovirus , Vírus de Plantas , Animais , Mudança Climática , Produtos Agrícolas , Ecossistema , Pradaria , Insetos Vetores , Doenças das Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA